Eigenvalue condition numbers and a formula of Burke, Lewis and Overton

Michael Karow
Berlin University of Technology
karow@math.TU-Berlin.de

October 18, 2004

Abstract

In [1] a first order expansion has been given for the minimum singular value of A-zI, $z\in\mathbb{C}$, about a nonderogatory eigenvalue λ of $A\in\mathbb{C}^{n\times n}$. This note investigates the relationship of the expansion with the Jordan canonical form of A. Furthermore, formulas for the condition number of eigenvalues are derived from the expansion.

1 Introduction

By $\pi_{\Sigma}(A)$ we denote the product of the nonzero singular values of the matrix $A \in \mathbb{C}^{n \times m}$, counting multiplicities. If A is square then $\Lambda(A)$ denotes the spectrum and $\pi_{\Lambda}(A)$ stands for the product of the nonzero eigenvalues, counting multiplicities. The subject of this note is the ratio

$$q(A,\lambda) := \frac{\pi_{\Sigma}(A - \lambda I_n)}{|\pi_{\Lambda}(A - \lambda I_n)|}, \quad \lambda \in \Lambda(A).$$

In [1] the following first order expansion has been given for the function

$$z \mapsto \sigma_{\min}(A - zI_n), \ z \in \mathbb{C},$$

where $\sigma_{\min}(\cdot)$ denotes the minimum singular value and I_n is the $n \times n$ identity matrix.

Theorem 1.1 Let $\lambda \in \mathbb{C}$ be a nonderogatory eigenvalue of algebraic multiplicity m of the matrix $A \in \mathbb{C}^{n \times n}$. Then

$$\sigma_{\min}(A-zI_n) = \frac{|z-\lambda|^m}{q(A,\lambda)} + \mathcal{O}(|z-\lambda|^{m+1}), \quad z \in \mathbb{C}.$$

The relevance of this result for the perturbation theory of eigenvalues is as follows. The ϵ - pseudospectrum of $A \in \mathbb{C}^{n \times n}$ with respect to the spectral norm, $\|\cdot\|$, is defined by

$$\Lambda_{\epsilon}(A) = \{ z \in \mathbb{C} \mid z \in \Lambda(A + \Delta), \Delta \in \mathbb{C}^{n \times n}, \|\Delta\| \le \epsilon \}.$$

In words, $\Lambda_{\epsilon}(A)$ is the set of all eigenvalues of all matrices of the form $A + \Delta$ where the spectral norm of the perturbation Δ is bounded by $\epsilon > 0$. It is well known that

$$\Lambda_{\epsilon}(A) = \{ z \in \mathbb{C} \mid \sigma_{\min}(A - zI) \le \epsilon \}.$$

Theorem 1.1 yields an estimate for the size of pseudospectra for small ϵ : Roughly speaking if ϵ is small enough then the connected component of $\Lambda_{\epsilon}(A)$ that contains the eigenvalue λ is approximately a disk of radius $(q(A,\lambda)\epsilon)^{1/m}$ about λ . It follows that $q(A,\lambda)^{1/m}$ is the Hölder condition number of λ . We discuss this in detail in Section 4.

However, the main concern of this note is to establish the relationship of $q(A, \lambda)$ with the Jordan decomposition of A. For a simple eigenvalue the relationship is as follows. Let $x, y \in \mathbb{C}^n$ be a right and a left eigenvector of A to the eigenvalue λ respectively. Then $P = (y^*x)^{-1}xy^*$ is the projection onto the one dimensional eigenspace $\mathbb{C} x$. The kernel of P is the direct sum of all generalized eigenspaces belonging to the eigenvalues different from λ . As is well known the condition number of λ equals the norm of P. Combined with the considerations above this yields that

$$q(A,\lambda) = ||P||. \tag{1}$$

In Section 3 we give an elementary proof of the identity (1) without using Theorem 1.1. Furthermore, we show that for a nondegoratory eigenvalue of algebraic multiplicity $m \geq 2$,

$$q(A, \lambda) = ||N^{m-1}||,$$
 (2)

where N is the nilpotent operator associated with λ in the Jordan decomposition of A. The formulas (1) and (2) are the main results of this note. The proofs also show that the assumption that λ is nonderogatory is necessary.

The next section contains some prelimaries about the computation of the products $\pi_{\Sigma}(A)$ and $\pi_{\Lambda}(A)$ and about the relationship of the Schur form of A with the Jordan decomposition.

Throughout this note, $\|\cdot\|$ stands for the spectral norm.

2 Preliminaries

Below we list some easily verified properties of $\pi_{\Lambda}(A)$, the product of the nonzero eigenvalues of A, and of $\pi_{\Sigma}(A)$, the product of the nonzero singular values of A. In the sequel A^T and A^* denote the transpose and the conjugate transpose of A respectively.

- (a) If $A \in \mathbb{C}^{n \times n}$ is nonsingular then $\pi_{\Lambda}(A) = \det(A)$.
- (b) For any $A \in \mathbb{C}^{n \times n}$: $\pi_{\Lambda}(A^T) = \pi_{\Lambda}(A)$ and $\pi_{\Lambda}(A^*) = \overline{\pi_{\Lambda}(A)}$.
- (c) Let $S \in \mathbb{C}^{n \times n}$ be nonsingular. Then for any $A \in \mathbb{C}^{n \times n}$, $\pi_{\Lambda}(SAS^{-1}) = \pi_{\Lambda}(A)$.
- (d) Let $A_{11} \in \mathbb{C}^{n \times n}$, $A_{22} \in \mathbb{C}^{m \times m}$ and $A_{12} \in \mathbb{C}^{n \times m}$. Then

$$\pi_{\Lambda} \left(\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \right) = \pi_{\Lambda}(A_{11}) \, \pi_{\Lambda}(A_{22}).$$

- (e) For any $A \in \mathbb{C}^{n \times m}$, $\pi_{\Sigma}(A)^2 = \pi_{\Lambda}(A^*A) = \pi_{\Lambda}(AA^*)$.
- (f) If $A \in \mathbb{C}^{n \times n}$ is nonsingular then $\pi_{\Sigma}(A) = |\det(A)| = |\pi_{\Lambda}(A)|$.
- (g) Let $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ be unitary. Then for any $A \in \mathbb{C}^{n \times m}$, $\pi_{\Sigma}(UAV) = \pi_{\Sigma}(A)$.

In the next section we need the lemmas below.

Lemma 2.1 Let $M \in \mathbb{C}^{n \times n}$ be nonsingular, $X \in \mathbb{C}^{p \times n}$ and $Y = XM^{-1}$. Then

$$\pi_{\Sigma}\left(\begin{bmatrix} M \\ X \end{bmatrix}\right) = \pi_{\Sigma}(M)\sqrt{\det(I + Y^*Y)}.$$

Proof: We have

$$\pi_{\Sigma} \left(\begin{bmatrix} M \\ X \end{bmatrix} \right)^{2} = \pi_{\Lambda} \left(\begin{bmatrix} M^{*} & X^{*} \end{bmatrix} \begin{bmatrix} M \\ X \end{bmatrix} \right)$$

$$= \det(M^{*}M + X^{*}X)$$

$$= \det(M^{*}(I + Y^{*}Y)M)$$

$$= \det(M^{*}) \det(M) \det(I + Y^{*}Y)$$

$$= \pi_{\Sigma}(M)^{2} \det(I + Y^{*}Y).$$

Lemma 2.2 Let $Y \in \mathbb{C}^{n \times m}$. Then $||I_n + Y^*Y|| = ||I_m + YY^*||$ and $\det(I_n + Y^*Y) = \det(I_m + YY^*)$.

Proof: The case Y=0 is trivial. Let $Y\neq 0$. The matrices Y and Y^* have the same nonzero singular values $\sigma_1\geq \sigma_2\ldots\geq \sigma_p$ say. The eigenvalues different from 1 of both I_n+Y^*Y and I_m+YY^* are $1+\sigma_1^2\geq 1+\sigma_2^2\ldots\geq 1+\sigma_p^2$. Thus $||I_n+Y^*Y||=||I_m+YY^*||=1+\sigma_1^2$ and $\det(I_n+Y^*Y)=\det(I_m+YY^*)=\prod_{k=1}^p(1+\sigma_k^2)$.

We proceed with remarks on the Jordan decomposition. Let $\lambda_1, \ldots, \lambda_{\kappa}$ be the pairwise different eigenvalues of $A \in \mathbb{C}^{n \times n}$. Let $\mathcal{X}_j = \ker(A - \lambda_j I_n)^n$ be the generalized eigenspaces. By the Jordan decomposition theorem we have

$$A = \sum_{j=1}^{\kappa} (\lambda_j P_j + N_j), \tag{3}$$

where $P_1, \ldots, P_{\kappa} \in \mathbb{C}^{n \times n}$ are the projectors of direct decomposition $\mathbb{C}^n = \bigoplus_{j=1}^{\kappa} \mathcal{X}_j$, i.e.

$$P_j^2 = P_j$$
, range $(P_j) = \mathcal{X}_j$, ker $(P_j) = \bigoplus_{k=1, k \neq j}^{\kappa} \mathcal{X}_k$,

and $N_1, \ldots, N_{\kappa} \in \mathbb{C}^{n \times n}$ are the nilpotent matrices $N_j = (A - \lambda_j I_n) P_j$. The eigenvalue λ_j is said to be

- semisimple (nondefective) if $\mathcal{X}_i = \ker(A \lambda_i I_n)$,
- simple if dim $\mathcal{X}_i = 1$,
- nonderogatory if dim $\ker(A \lambda_i I_n) = 1$.

In the following m denotes the algebraic multiplicity of λ_j . Note that if $m \geq 2$ then λ_j is nonderogatory if and only if $N_i^{m-1} \neq 0$. We now recall how to obtain the operators P_i and N_j from a Schur form of A. We only consider the nontrivial case that A has at least two different eigenvalues. By the Schur decomposition theorem there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$U^*AU = \begin{bmatrix} \lambda_j I_m + T & A_{12} \\ 0 & A_{22} \end{bmatrix},$$

where $A_{12} \in \mathbb{C}^{m \times (n-m)}$, $A_{22} \in \mathbb{C}^{(n-m) \times (n-m)}$, $\Lambda(A_{22}) = \Lambda(A) \setminus \{\lambda_j\}$ and $T \in \mathbb{C}^{n \times n}$ is strictly upper triangular,

$$T = \begin{bmatrix} 0 & t_{12} & \dots & & & & t_{1m} \\ & \ddots & t_{13} & & & \vdots \\ & & \ddots & \ddots & & \vdots \\ & & & \ddots & t_{m-1,m} \\ & & & & 0 \end{bmatrix}.$$

If m=1 (i.e. λ_j is simple) then T is the 1×1 zero matrix. Since the spectra of T and $A_{22} - \lambda_j I_{n-m}$ are disjoint the Sylvester equation

$$R(A_{22} - \lambda_j I_{n-m}) - TR = A_{12}. (4)$$

has a unique solution $R \in \mathbb{C}^{m \times (n-m)}$.

Proposition 2.3 With the notation above the projector onto the generalized eigenspace and the nilpotent operator associated with λ_i are given by

$$P_j = U \begin{bmatrix} I_m & -R \\ 0 & 0 \end{bmatrix} U^*, \quad and \quad N_j = U \begin{bmatrix} T & -TR \\ 0 & 0 \end{bmatrix} U^*.$$

For any integer $\ell > 1$ we have

$$N_j^{\ell} = U \begin{bmatrix} T^{\ell} & -T^{\ell}R \\ 0 & 0 \end{bmatrix} U^*. \tag{5}$$

The spectral norms of P_j and of N_i^{ℓ} satisfy

$$||P_j|| = ||I_m + RR^*||^{1/2}$$

$$||N_i^{\ell}|| = ||T^{\ell}(I_m + RR^*)(T^*)^{\ell}||^{1/2}.$$
(6)

$$||N_j^{\ell}|| = ||T^{\ell}(I_m + RR^*)(T^*)^{\ell}||^{1/2}.$$
 (7)

Let $X_1 := U \begin{bmatrix} I_m \\ 0 \end{bmatrix} \in \mathbb{C}^{n \times m}, \ X_2 := U \begin{bmatrix} R \\ I_{n-m} \end{bmatrix} \in \mathbb{C}^{n \times (n-m)}$. Then $AX_1 = I$ $X_1(\lambda_j I_m + T)$ and (4) yields that $AX_2 = X_2 A_{22}$. Hence, range (X_1) and range (X_2) are complementary invariant subspaces of A. Furthermore it follows that for any $\lambda \in \mathbb{C}$ and any integer $\ell \geq 1$,

$$(A - \lambda I_n)^{\ell} X_1 = X_1 ((\lambda_j - \lambda) I_m + T)^{\ell}, \qquad (A - \lambda I_n)^{\ell} X_2 = X_2 (A_{22} - \lambda I_{n-m})^{\ell}.$$
 (8)

Let $A_{22} = \sum_{k \leq \kappa, k \neq j} (\lambda_k \hat{P}_k + \hat{N}_k)$ be the Jordan decomposition of A_{22} . Set

$$P_{k} := U \begin{bmatrix} 0 & R\widehat{P}_{k} \\ 0 & \widehat{P}_{k} \end{bmatrix} U^{*}, \qquad k = 1, \dots, \kappa, \quad k \neq j,$$

$$P_{j} := U \begin{bmatrix} I & -R \\ 0 & 0 \end{bmatrix} U^{*}, \qquad (9)$$

$$N_{k} := (A - \lambda_{k}I)P_{k}, \qquad k = 1, \dots, \kappa.$$

Using the relations (8) it is staightforward to verify that $A = \sum_{k=1}^{\kappa} (\lambda_k P_k + N_k)$ is the Jordan decomposition of A. The formulas (8), (6) and (7) are immediate from (9). \square

We give an expression for $||N_j^{m-1}||$ which is a bit more explicite than formula (7). First note that if λ_j has algebraic multiplicity $m \geq 2$ then

$$T^{m-1} = \begin{bmatrix} 0 & \dots & 0 & \tau \\ \vdots & & \vdots & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix}, \quad \text{where} \quad \tau = \prod_{k=1}^{m-1} t_{k,k+1}.$$

Let $e_m^T = [0...01]^T \in \mathbb{C}^m$ and $r = e_m^T R$. Then r is the lower row of R. Since the lower row of TR is zero it follows from the Sylvester equation (4) that

$$r = e_m^T A_{12} (A_{22} - \lambda_j I_m)^{-1}. (10)$$

From (5) or (7) we obtain

Proposition 2.4 Suppose λ_j has algebraic multiplicity $m \in \{2, ..., n-1\}$. Then

$$||N_j^{m-1}|| = |\tau| \sqrt{1 + ||r||^2}.$$

3 Main result

We are now in a position to state and proof our main result on the ratio

$$q(A, \lambda_j) = \frac{\pi_{\Sigma}(A - \lambda_j I_n)}{|\pi_{\Lambda}(A - \lambda_j I_n)|}, \qquad \lambda_j \in \Lambda(A).$$
(11)

Theorem 3.1 Let $\lambda_j \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. Let P_j and N_j be the eigenprojector and the nilpotent operator associated with λ_j . Then the following holds.

- (a) If λ_i is a semisimple eigenvalue then $q(A, \lambda_i) = \pi_{\Sigma}(P_i)$.
- (b) If λ_j is a simple eigenvalue then $q(A, \lambda_j) = ||P_j||$.
- (c) If λ_j is a nonderogatory eigenvalue of algebraic multiplicity $m \geq 2$ then

$$q(A, \lambda_j) = ||N_j^{m-1}||.$$

Proof: First, we treat the case that A has at least two different eigenvalues. In view of Proposition 2.3 and since the products $\pi_{\Sigma}(A - \lambda_j I_n)$, $\pi_{\Lambda}(A - \lambda_j I_n)$ are invariant under unitary similarity transformations we may assume that

$$A = \begin{bmatrix} \lambda_j I_m + T & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad P_j = \begin{bmatrix} I_m & -R \\ 0 & 0 \end{bmatrix},$$

where $\Lambda(A_{22}) = \Lambda(A) \setminus \{\lambda_j\}$, $T \in \mathbb{C}^{n \times n}$ is strictly upper triangular and $R \in \mathbb{C}^{m \times (n-m)}$ is the solution of the Sylvester equation $R(A_{22} - \lambda_j I_{n-m}) - TR = A_{12}$.

(a). Suppose λ_j is semisimple. Then T=0 and $R(A_{22}-\lambda_jI_{n-m})=A_{12}$. Thus,

$$(A - \lambda_j I_n)^* (A - \lambda_j I_n) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & (A_{22} - \lambda_j I_{n-m})^* (A_{22} - \lambda_j I_{n-m}) + A_{12}^* A_{12} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & (A_{22} - \lambda_j I_{n-m})^* (I_{n-m} + R^* R) (A_{22} - \lambda_j I_{n-m}) \end{bmatrix}.$$

Thus

$$\pi_{\Sigma}(A - \lambda_{j}I_{n})^{2} = \det((A_{22} - \lambda_{j}I_{n-m})^{*}(I_{n-m} + R^{*}R)(A_{22} - \lambda_{j}I_{n-m}))$$

$$= |\det(A_{22} - \lambda_{j}I_{n-m})|^{2} \det(I_{n-m} + R^{*}R)$$

$$= |\pi_{\Lambda}(A_{n} - \lambda_{j}I)|^{2} \det(I_{n-m} + R^{*}R).$$
(12)

Furthermore we have $P_j P_j^* = \begin{bmatrix} 0 & I_m + RR^* \\ 0 & 0 \end{bmatrix}$ and hence

$$\pi_{\Sigma}(P_j)^2 = \det(I_m + RR^*) = \det(I_{n-m} + R^*R).$$
 (13)

The latter equation holds by Lemma 2.2. By combining (12) and (13) we obtain (a).

(b). If m=1 then P_j has rank 1 and hence, $\pi_{\Sigma}(P_j)=\|P_j\|$. Thus (b) follows from (a).

(c) Suppose
$$m \geq 2$$
 and λ_j is nonderogatory. Then $T = \begin{bmatrix} 0 & D \\ \vdots & D \\ 0 & \dots & 0 \end{bmatrix}$, where $D \in \mathbb{C}^{(m-1)\times (m-1)}$

is upper triangular and nonsingular. In the following we write $A_{12} = \begin{bmatrix} \tilde{A} \\ a \end{bmatrix}$, where a is the lower row of A_{12} . Let r denote the lower row of R. By Formula (10) we have

$$r = a(A_{22} - \lambda_i I)^{-1}. (14)$$

Let us determine $\pi_{\Sigma}(A)$. Since removing of a column of zeros and a permutation of rows does not change the nonzero singular values of a matrix we have

$$\pi_{\Sigma}(A - \lambda_{j}I_{n}) = \pi_{\Sigma} \left(\begin{bmatrix} {}^{0}D & \tilde{A} \\ \vdots & & \\ {}^{0}\dots {}^{0} & a \\ 0 & A_{22} - \lambda_{j}I_{n-m} \end{bmatrix} \right) = \pi_{\Sigma} \left(\begin{bmatrix} D & \tilde{A} \\ 0 & A_{22} - \lambda_{j}I_{n-m} \\ {}^{0}\dots {}^{0} & a \end{bmatrix} \right).$$

Lemma 2.1 yields

$$\pi_{\Sigma} \left(\begin{bmatrix} D & \tilde{A} \\ 0 & A_{22} - \lambda_{j} I_{n-m} \end{bmatrix} \right) = \pi_{\Sigma} \left(\begin{bmatrix} D & \tilde{A} \\ 0 & A_{22} - \lambda_{j} I \end{bmatrix} \right) \sqrt{\det(1 + yy^{*})}$$

$$= |\det(D)\det(A_{22} - \lambda_{j} I)| \sqrt{1 + ||y||^{2}}$$

$$= |\pi_{\Lambda}(A - \lambda_{j} I)| |\det(D)| \sqrt{1 + ||y||^{2}}$$

where

$$y = \begin{bmatrix} 0 & \dots & a \end{bmatrix} \begin{bmatrix} D & \tilde{A} \\ 0 & A_{22} - \lambda_j I \end{bmatrix}^{-1}.$$

From (14) it follows that $y = \begin{bmatrix} 0 & \dots & r \end{bmatrix}$ and hence, ||y|| = ||r||. In summary,

$$\pi_{\Sigma}(A - \lambda_j I_n) = |\pi_{\Lambda}(A - \lambda_j I_n)| |\det(D)| \sqrt{1 + ||r||^2}.$$

But $|\det(D)|\sqrt{1+||r||^2} = ||N_j^{m-1}||$ by Proposition 2.4. Hence, (c) holds.

Finally, we treat the case that λ_1 is the only eigenvalue of A. Let $U^*AU = \lambda_1 I_n + T$ be a Schur decomposition. The eigenprojection is $P_1 = I_n$ and the nilpotent operator is $N_1 = A - \lambda_1 I_n = UTU^*$. Since all eigenvalues of $A - \lambda_1 I_n$ are zero we have $\pi_{\Lambda}(A - \lambda_1 I_n) = 1$ by definition. If λ_1 is semisimple then also $\pi_{\Sigma}(A - \lambda_1 I_n) = \pi_{\Sigma}(0) = 1 = \pi_{\Sigma}(P_1)$. Hence, $q(A, \lambda_1) = 1$. Suppose $n \geq 2$ and λ_1 is nonderogatory. Then

$$q(A, \lambda_1) = \pi_{\Sigma}(A - \lambda_1 I_n) = \pi_{\Sigma}(T) = |\det(D)| = ||T^{n-1}|| = ||N_1^{n-1}||,$$

where
$$T = \begin{bmatrix} {}^0 & D \\ \vdots & \\ {}^0 \dots {}^0 \end{bmatrix}$$
.

4 Condition numbers

In the following $\mathcal{D}_{\lambda}(r)$ denotes the closed disk of radius r > 0 about $\lambda \in \mathbb{C}$. If $\lambda \in \Lambda(A)$, $A \in \mathbb{C}^{n \times n}$ then $\mathcal{C}_{\lambda}(\epsilon)$ denotes the connected component of the ϵ -pseudospectrum, $\Lambda_{\epsilon}(A)$, that contains λ . We define

$$R_{\lambda}^{+}(\epsilon) := \inf\{r > 0 \mid \mathcal{C}_{\lambda}(\epsilon) \subseteq \mathcal{D}_{\lambda}(r) \},$$

$$R_{\lambda}^{-}(\epsilon) := \sup\{r > 0 \mid \mathcal{D}_{\lambda}(r) \subseteq \mathcal{C}_{\lambda}(\epsilon) \},$$

Then

$$\mathcal{D}_{\lambda}(R_{\lambda}^{-}(\epsilon)) \subseteq \mathcal{C}_{\lambda}(\epsilon) \subseteq \mathcal{D}_{\lambda}(R_{\lambda}^{+}(\epsilon)).$$

Theorem 4.1 Let $\lambda \in \Lambda(A)$ be a nonderogatory eigenvalue of algebraic multiplicity m. Then

$$R_{\lambda}^{\pm}(\epsilon) = q(A,\lambda)^{1/m} \epsilon^{1/m} + o(\epsilon^{1/m}). \tag{15}$$

The proof uses Theorem 1.1 and the lemma below.

Lemma 4.2 Let $U \subseteq \mathbb{C}^n$ be an open neighborhood of $z_0 \in \mathbb{C}^n$. Let $f, g : U \to [0, \infty)$ be continuous functions. For $\epsilon \geq 0$ let $S_f(\epsilon)$ and $S_g(\epsilon)$ denote the connected component containing z_0 of the sublevel set $\{z \in U \mid f(z) \leq \epsilon\}$ and $\{z \in U \mid g(z) \leq \epsilon\}$ respectively. Assume that $0 = g(z_0)$ is an isolated zero of g, and

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1. \tag{16}$$

Then there exists an $\epsilon_0 > 0$ and functions $h_{\pm} : [0, \epsilon_0] \to [0, \infty)$ with $\lim_{\epsilon \to 0} h_{\pm}(\epsilon) = 1$ such that for all $\epsilon \in [0, \epsilon_0]$,

$$S_q(h_-(\epsilon)\,\epsilon) \subseteq S_f(\epsilon) \subseteq S_q(h_+(\epsilon)\,\epsilon). \tag{17}$$

We postpone the proof of the lemma to the end of this section.

Proof of Theorem 4.1: Let in Lemma 4.2, $z_0 = \lambda$ and

$$f(z) = \sigma_{min}(A - zI_n), \qquad g(z) = \frac{|z - \lambda|^m}{q(A, \lambda)}, \qquad z \in \mathbb{C}.$$

Then $S_f(\epsilon) = \mathcal{C}_{\lambda}(\epsilon)$ and $S_g(\epsilon) = \mathcal{D}_{\lambda}((q(A,\lambda)\epsilon)^{1/m})$. Theorem 1.1 yields $\lim_{z\to\lambda} \frac{f(z)}{g(z)} = 1$. Hence, by the lemma there are functions h_{\pm} with $\lim_{\epsilon\to 0} h_{\pm}(\epsilon) = 1$ and

$$\mathcal{D}_{\lambda}((q(A,\lambda) h_{-}(\epsilon)\epsilon)^{1/m}) \subseteq \mathcal{C}_{\lambda}(\epsilon) \subseteq \mathcal{D}_{\lambda}((q(A,\lambda) h_{+}(\epsilon)\epsilon)^{1/m}).$$

This shows (15).

Now, we give the definition for the Hölder condition number of an eigenvalue of arbitrary multiplicity (see [4]). For $\lambda \in \mathbb{C}$, $m \in \mathbb{N}$ and $\widetilde{A} \in \mathbb{C}^{n \times n}$ we set

$$d_m(\widetilde{A}, \lambda) := \min\{ r \geq 0 \mid \mathcal{D}_{\lambda}(r) \text{ contains at least } m \text{ eigenvalues of } \widetilde{A} \}.$$

If λ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ of algebraic multiplicity m then the Hölder condition number of λ to the order $\alpha > 0$ is defined by

$$\operatorname{cond}_{\alpha}(A,\lambda) = \lim_{\epsilon \searrow 0} \sup_{\|\Delta\| < \epsilon} \frac{d_m(A + \Delta, \lambda)}{\|\Delta\|^{\alpha}}.$$

It is easily seen that $0 \neq \operatorname{cond}_{\alpha}(A, \lambda) \neq \infty$ for at most one order $\alpha > 0$.

Theorem 4.3 Let $\lambda \in \Lambda(A)$ be a nonderogatory eigenvalue of multiplicity m. Then

$$\operatorname{cond}_{1/m}(A,\lambda) = q(A,\lambda)^{1/m} = \begin{cases} ||P|| & \text{if } m = 1, \\ ||N^{m-1}||^{1/m} & \text{otherwise,} \end{cases}$$
 (18)

where $P \in \mathbb{C}^{n \times n}$ is the eigenprojector onto the generalized eigenspace $\ker(A - \lambda I)^m$, and $N = (A - \lambda I)P$.

Proof: Let $\Delta \in \mathbb{C}^{n \times n}$ with $||\Delta|| \leq \epsilon$. Then the continuity of eigenvalues yields, that at least m eigenvalues of $A + \Delta$ are contained in $\mathcal{C}_{\lambda}(\epsilon)$. Hence

$$d_m(A + \Delta, \lambda) \le R_{\lambda}^+(\epsilon) = q(A, \lambda)^{1/m} \epsilon^{1/m} + o(\epsilon^{1/m}).$$

By letting $\epsilon = ||\Delta||$ we obtain that for all $\Delta \in \mathbb{C}^{n \times n}$,

$$\frac{d_m(A+\Delta,\lambda)}{\|\Delta\|^{1/m}} \le q(A,\lambda)^{1/m} + o(\|\Delta\|^{1/m}) \|\Delta\|^{-(1/m)}.$$

This yields

$$\operatorname{cond}_{1/m}(A,\lambda) \le q(A,\lambda)^{1/m}$$

Let $z_{\epsilon} \in \mathbb{C}$ is a boundary point of $\mathcal{C}_{\lambda}(\epsilon)$. Then there is a Δ_{ϵ} with $\|\Delta_{\epsilon}\| = \epsilon$ and $z \in \Lambda(A + \Delta_{\epsilon})$. If ϵ is such that $\mathcal{C}_{\lambda}(\epsilon) \cap \Lambda(A) = \{\lambda\}$ then precisely m eigenvalues of $A + \Delta_{\epsilon}$ are contained in $\mathcal{C}_{\lambda}(\epsilon)$. Thus,

$$\begin{array}{rcl} d_m(A+\Delta_\epsilon,\lambda) & = & |z_\epsilon-\lambda| \\ & \geq & R_\lambda^-(\epsilon) \\ & = & q(A,\lambda)^{1/m} \epsilon^{1/m} + o(\epsilon^{1/m}). \end{array}$$

and therefore

$$\frac{d_m(A + \Delta_{\epsilon}, \lambda)}{\|\Delta_{\epsilon}\|^{1/m}} \ge q(A, \lambda)^{1/m} + o(\epsilon^{1/m})\epsilon^{-(1/m)}.$$

Hence, $\operatorname{cond}_{1/m}(A,\lambda) \ge q(A,\lambda)^{1/m}$.

Remark: In [6] (see also [4, 5]) the following generalization of Theorem 4.3 has been shown. Let λ be an *arbitrary* eigenvalue of A. If λ is semisimple then

$$\operatorname{cond}_1(A,\lambda) = ||P||.$$

If λ is not semisimple then

$$\operatorname{cond}_{1/m}(A,\lambda) = ||N^{m-1}||^{1/m},$$

where m denotes the index of nilpotency of N.

Proof of Lemma 4.2 By B_r we denote the closed ball of radius r > 0 about z_0 . The condition that z_0 is an isolated zero of g combined with (16) yields that z_0 is also an isolated zero of f. Hence, there is an $r_0 > 0$ such that f(z) > 0 for all $z \in B_{r_0} \setminus \{z_0\}$. This implies that $\epsilon_r := \min_{z \in \partial B_r} f(z) > 0$ for any $r \in (0, r_0]$. If $\epsilon < \epsilon_r$ then ∂B_r does not intersect the sublevel sets $\{z \in U \mid f(z) \le \epsilon\}$. Thus $S_f(\epsilon)$ is contained in the interior of B_r . Note that $S_f(\epsilon)$ being a connected component of a closed set is closed. It follows that $S_f(\epsilon)$ is compact if $\epsilon < \epsilon_{r_0}$. Now, let

$$\phi_{\pm}(z) := \begin{cases} (1 \pm ||z - z_0||) \frac{g(z)}{f(z)} & z \in B_{r_0} \setminus \{z_0\}, \\ 1, & z = z_0. \end{cases}$$

Condition (16) yields that the functions $\phi_{\pm}: U \to \mathbb{R}$ are continuous. For $\epsilon < \epsilon_{r_0}$ let

$$h_{-}(\epsilon) := \min_{z \in S_f(\epsilon)} \phi_{-}(z), \quad h_{+}(\epsilon) := \max_{z \in S_f(\epsilon)} \phi_{+}(z).$$

Then we have for all $\epsilon < \epsilon_r$,

$$\min_{z \in \partial B_r} \phi_{\pm}(z) \le h_{\pm}(\epsilon) \le \max_{z \in \partial B_r} \phi_{\pm}(z).$$

As r tends to 0 the max and the min tend to $\phi_{\pm}(z_0) = 1$. This yields $\lim_{\epsilon \to 0} h_{\pm}(\epsilon) = 1$. If $z \in \partial S_f(\epsilon)$ then $f(z) = \epsilon$ and $g(z) > (1 - ||z - z_0||) \frac{g(z)}{f(z)} f(z) \ge h_{-}(\epsilon) \epsilon$. Thus $\partial S_f(\epsilon)$ does not intersect $E := \{ z \in U \mid g(z) \le h_{-}(\epsilon) \epsilon \}$. Thus $S_g(h_{-}(\epsilon) \epsilon)$ being a connected component of E is either contained in the interior of $S_f(\epsilon)$ or in the complement of $S_f(\epsilon)$. The latter is impossible since $z_0 \in S_f(\epsilon) \cap S_g(h_{-}(\epsilon) \epsilon)$. Hence, $S_g(h_{-}(\epsilon) \epsilon) \subset S_f(\epsilon)$. This proves the first inclusion in (17). To prove the second suppose $z_0 \ne z \in \partial S_g(h_{+}(\epsilon) \epsilon) \cap S_f(\epsilon)$. Then $g(z) = h_{+}(\epsilon) \epsilon$ and $0 < f(z) \le \epsilon$. Hence $g(z)/f(z) \ge h_{+}(\epsilon)$, a contradiction. Thus $S_f(\epsilon)$ is contained in the interior of $S_g(h_{+}(\epsilon) \epsilon)$.

References

- [1] J.V. Burke, A.S. Lewis and M.L. Overton: Optimization and Pseudospectra, with Applications to Robust Stability SIAM J. Matrix Anal. Appl. 25 (2003), pp. 80-104.
- [2] Hinrichsen, D.; Pritchard, A.J.: Dynamical Systems Theory. Manuscript, 2004.
- [3] Horn, R.A.; Johnson, C.R.: Matrix analysis. Cambridge University Press, 1985.
- [4] Chaitin-Chatelin, F.; Harrabi, A.; Ilahi, A.: About Hölder condition numbers and the stratification diagram for defective eigenvalues. Math. Comput. Simul. 54, No.4-5, 397-402 (2000)
- [5] Harrabi, A.: Pseudospectres d'Operateurs Intégraux et Différentiels: Application a la Physique Mathematique. Thesis. Universite des Sciences Sociales de Toulouse. May 1998.

- [6] Karow, M.: Geometry of spectral value sets. Ph.D. thesis. Universität Bremen, July 2003.
- [7] Moro, J.; Burke, J.V.; Overton, M. L.: On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. *SIAM J. Matrix Anal. Appl.* 18(4):793-817, 1997.
- [8] Stewart, G.W., Sun, J.: MATRIX PERTURBATION THEORY. Academic Press, San Diego, 1990.