ON ARTIN'S L-FUNCTIONS. III: ONE DIMENSIONAL CHARACTERS

BY FLORIN NICOLAE AT BERLIN AND BUCHAREST

Let K/\mathbb{Q} be a finite Galois extension with the Galois group G, and let χ be a nontrivial irreducible character of G. Artin's conjecture predicts that the *L*-function $L(s, \chi, K/\mathbb{Q})$ is holomorphic in the whole complex plane ([1], P. 105).

Let χ_1, \ldots, χ_r be the irreducible nontrivial characters of G. The corresponding L-functions $L(s, \chi_1), \ldots, L(s, \chi_r)$ are algebraically independent over \mathbb{C} ([2], Corollary 4, P. 183). Let $\mathcal{A} := \mathbb{C}[L(s, \chi_1), \ldots, L(s, \chi_r)]$ be the \mathbb{C} -Algebra generated by the meromorphic functions $L(s, \chi_1), \ldots, L(s, \chi_r)$. It is isomorphic to the algebra of polynomials in r variables over \mathbb{C} . Let $\mathcal{O}(\mathbb{C})$ be the \mathbb{C} -algebra of holomorphic functions in \mathbb{C} . Artin's conjecture is:

 $\mathcal{A} \subseteq \mathcal{O}(\mathbb{C}).$

Let S be the set of all subgroups of G. For a subgroup $H \in S$ let \hat{H}_0^1 be the set of all non-trivial one dimensional complex characters of H, that is, the set of all nonconstant group homomorphisms of H in the multiplicative group $\operatorname{GL}_1(\mathbb{C}) = \mathbb{C}^{\times}$. For a subgroup $H \in S$ and a character $\varphi \in \hat{H}_0^1$ let $\varphi^G := \operatorname{Ind}_H^G$ be the induced character of G. The Artin *L*-function $L(s, \varphi^G, K/\mathbb{Q})$ is holomorphic, being equal to the Hecke *L*-function $L(s, \varphi, K_2/K_1)$ of the abelian extension K_2/K_1 , K_1 the fixed field of H, K_2 the fixed field of Ker $\varphi \subseteq H$, so:

$$\mathcal{B} \subseteq \mathcal{H} \subseteq \mathcal{A},$$

where \mathcal{B} is the \mathbb{C} -subalgebra of \mathcal{A} generated by the functions $L(s, \varphi^G, K/\mathbb{Q}), H \in \mathcal{S}, \varphi \in \hat{H}^1_0$, and $\mathcal{H} := \mathcal{A} \cap \mathcal{O}(\mathbb{C})$. How large is the algebra \mathcal{B} ?

Theorem 1. The finitely generated \mathbb{C} -algebra \mathcal{B} is of Krull dimension r. The quotient field of \mathcal{B} equals the quotient field of \mathcal{A} .

P r o o f: Let $\chi \in {\chi_1, \ldots, \chi_r}$. By ([3], P. 209) there exist subgroups H_1, \ldots, H_l of G, non-trivial one dimensional characters φ_i of H_i , $i = 1, \ldots, l$ and integers m_1, \ldots, m_l such that

$$\chi = m_1 \varphi_1^G + \ldots + m_l \varphi_l^G.$$

It follows that

$$L(s,\chi) = L(s,\varphi_1^G)^{m_1} \cdot \ldots \cdot L(s,\varphi_l^G)^{m_l} \in \mathcal{B},$$

hence \mathcal{A} is contained in the quotient field of \mathcal{B} . Since \mathcal{B} is contained in \mathcal{A} it follows that the quotient field of \mathcal{B} equals the quotient field of \mathcal{A} . The Krull dimension of the finitely generated \mathbb{C} -algebra \mathcal{B} equals the transcendence degree of its quotient field, that is, the trancendence degree of the quotient field of \mathcal{A} , which is r. \Box

Date: November 27, 2005.

Theorem 2. The following assertions are equivalent: (a) $\mathcal{B} = \mathcal{A}$. (b) *G* is *M*-group.

Proof:

(a) \Rightarrow (b): Let $\chi \in {\chi_1, \ldots, \chi_r}$. Since $L(s, \chi) \in \mathcal{B}$ there exist subgroups H_1, \ldots, H_l of G, one dimensional non-trivial irreducible characters φ_j of H_j , $j = 1, \ldots, l$ and a polynomial

$$P(X_1,...,X_l) = \sum_{i_1 \ge 0,...,i_l \ge 0} a_{i_1...i_l} X_1^{i_1} \dots X_l^{i_l} \in \mathbb{C}[X_1,...,X_l]$$

such that

$$L(s,\chi) = P(L(s,\varphi_1^G),\ldots,L(s,\varphi_l^G)),$$

that is

$$L(s,\chi) = \sum_{i_1 \ge 0, \dots, i_l \ge 0} a_{i_1 \dots i_l} L(s, i_1 \varphi_1^G + \dots + i_l \varphi_l^G).$$

By the linear independence of *L*-functions corresponding to different characters ([2], Theorem 1, P. 179) it follows that there exist i_1, \ldots, i_l such that

$$\chi = i_1 \varphi_1^G + \ldots + i_l \varphi_l^G$$

Since χ is irreducible there exist $1 \leq j \leq l$ such that

$$\chi=\varphi_j^G,$$

hence G is M-group.

(b) \Rightarrow (a): Let $\chi \in {\chi_1, \ldots, \chi_r}$. Since G is M-group, there exist a subgroup $H \subseteq G$ and a one dimensional character $\varphi : H \to \mathbb{C}^{\times}$ such that

$$\chi=\varphi^G.$$

Since χ is not trivial, the character φ is not trivial, so

$$L(s,\chi) = L(s,\varphi^G) \in \mathcal{B}.$$

Hence

$$\mathcal{A} \subseteq \mathcal{B}.$$

Let \mathcal{B}' be the integral closure of \mathcal{B} in \mathcal{A} . It holds

$$\mathcal{B} \subseteq \mathcal{B}' \subseteq \mathcal{H} \subseteq \mathcal{A}.$$

Theorem 3. The following assertions are equivalent: (a) $\mathcal{B}' = \mathcal{A}$.

(b) G is quasi M-group: For each irreducible character χ of G there exist a subgroup H of G, a 1-dimensional character $\varphi : H \to \mathbb{C}^{\times}$ and a number $k \geq 1$ such that $k\chi = \varphi^{G}$.

Proof:

(a) \Rightarrow (b): Let $\chi \in {\chi_1, \ldots, \chi_r}$. The element $L(s, \chi)$ of \mathcal{A} satisfies a monic equation with coefficients in \mathcal{B} :

(1)
$$L(s,\chi)^{l} + b_{l-1}L(s,\chi)^{l-1} + \ldots + b_{1}L(s,\chi) + b_{0} = 0,$$

 $l \geq 1, b_0, \ldots, b_{l-1} \in \mathcal{B}$. Let $\varphi_1^G, \ldots, \varphi_m^G$ be all pairwise distinct characters of G which are obtained by inducing from non-trivial linear characters of subgroups of G, and let $f_1 := L(s, \varphi_1^G), \ldots, f_m := L(s, \varphi_m^G)$. It holds:

$$\mathcal{B} = \mathbb{C}[f_1, \ldots, f_m].$$

ON ARTIN'S L-FUNCTIONS. III: ONE DIMENSIONAL CHARACTERS

3

Each coefficient b_j , j = 0, ..., l-1 is a polynomial in $f_1, ..., f_m$:

$$b_j = P_j(f_1, \dots, f_m) = \sum_{\substack{t_1 \ge 0, \dots, t_m \ge 0}} a_{t_1 \dots t_m}^{(j)} f_1^{t_1} \dots f_m^{t_m} =$$
$$= \sum_{\substack{t_1 \ge 0, \dots, t_m \ge 0}} a_{t_1 \dots t_m}^{(j)} L(s, t_1 \varphi_1^G + \dots + t_m \varphi_m^G),$$

and (1) rewrites as

(2)
$$L(s,l\chi) + \sum_{j=0}^{t-1} \sum_{t_1 \ge 0, \dots, t_m \ge 0} a_{t_1 \dots t_m}^{(j)} L(s, t_1 \varphi_1^G + \dots + t_m \varphi_m^G + j\chi) = 0.$$

By the linear independence of L-functions corresponding to different characters ([2], Theorem 1, P. 179) and by (2) it follows that there exist $j \in \{0, \ldots, l-1\}$ and $t_1 \ge 0, \ldots, t_m \ge 0$ such that

$$l\chi = t_1\varphi_1^G + \ldots + t_m\varphi_m^G + j\chi,$$

that is

$$(l-j)\chi = t_1\varphi_1^G + \ldots + t_m\varphi_m^G.$$

Since χ is an irreducible character there exist $u \in \{1, \ldots, m\}$ and $1 \leq k \leq l-j$

such that $k\chi = \varphi_u^G$, so G is quasi M-group. (b) \Rightarrow (a): Let $\chi \in {\chi_1, \ldots, \chi_r}$. Since G is quasi M-group, there exist a subgroup $H \subseteq G$, a 1-dimensional character $\varphi : H \to \mathbb{C}^{\times}$ and $k \ge 1$ such that

$$k\chi = \varphi^G.$$

Since χ is not trivial, the character φ is not trivial. It holds

$$L(s,\chi)^k = L(s,k\chi) = L(s,\varphi^G) \in \mathcal{B},$$

so $L(s, \chi) \in \mathcal{B}'$. Hence

$$\mathcal{A} \subseteq \mathcal{B}'.$$

It is not known whether there exist quasi M-groups which are not M-groups. By a theorem of Taketa every *M*-group is solvable. It is not known whether every quasi M-group is solvable.

I thank Peter Müller for the reference [3] and for criticism which led to the correct formulation of Theorem 3.

I thank Michael Pohst, Florian Hess and Sebastian Pauli for the invitation to join the KANT-group at the Technical University Berlin, where this paper was finished.

References

- [1] E. Artin, Über eine neue Art von L-Reihen, Abh. Math. Sem. Hamburg 3(1924), 89-108. 1
- [2] F. Nicolae, On Artin's L-functions. I, J. reine angew. Math. 539(2001), 179-184. 1, 2, 3
- [3] R. van der Waall, On Brauer's induction formula of characters of groups, Arch. Math. 63, **3**(1994), 208-210. 1, 3

Technische Universität Berlin, Institut für Mathematik MA 8-1, Strasse des 17. Juni 136, D-10623 Berlin e-mail:nicolae@math.tu-berlin.de

and

Institute of Mathematics of the Romanian Academy, P.O.BOX 1-764, RO-014700 Bucharest