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Abstract. Let k be a global field with maximal order ok and let m0 be an

ideal of ok. We present algorithms for the computation of the multiplicative

group (ok/m0)∗ of the residue class ring ok/m0 and the discrete logarithm
therein based on the explicit representation of the group of principal units

[Has80]. We show how these algorithms can be combined with other methods
[Coh00] in order to obtain more efficient algorithms. They are applied to

the computation of the ray class group Clmk modulo m = m0m∞, where m∞
denotes a formal product of real infinite places, and also to the computation of
conductors of ideal class groups and of discriminants and genera of class fields.

1. Introduction

Let k be a number field with ring of integers ok and let m0 be an ideal of ok.
We describe how a basis of the multiplicative group (ok/m0)∗ can be computed and
how the discrete logarithm problem in (ok/m0)∗ can be solved.

Let
∏

p|m0
pmp be the decomposition of m0 into a product of prime ideals. Then

the unit group (ok/m0)∗ of the residue class ring ok/m0 satisfies

(ok/m0)∗ ∼=
∏
p|m0

(ok/p
mp)∗.

Hence, the computation of (ok/m0)∗ is reduced to the computation of all (ok/p
m)∗.

For non-zero prime ideals p of ok the completion of k with respect to the corre-
sponding non-archimedian exponential valuation vp is denoted by kp. Let op denote
the valuation ring of kp with unique maximal ideal bp. Then

(ok/p
m)∗ ∼= (op/bp

m)∗ ∼= (op/bp)∗×(1+bp)/(1+bp
m) ∼= (ok/p)∗×(1+p)/(1+pm).

In order to determine (ok/p
m)∗ we therefore compute (o/p)∗ and (1 + p)/(1 + pm).

Algorithms for the computation of a primitive element of the residue class field
(ok/p)∗ are contained in the literature, for instance a method by Gauss in [PZ89].
For a survey of algorithms for the discrete logarithm in the finite field (ok/p)∗ we
refer the reader to [SWD].

In section 3 we present a method for the computation of a basis of (1+p)/(1+pm)
[Pau96] which is derived from the explicit representation of the principal units (or
one-units) of a local field as described in [Has80, chapter 15].

In section 4 we present an algorithm for the computation of (1 + p)/(1 + pm) by
H. Cohen, M. Olivier and F. Diaz y Diaz [CDO96, CDO98, Coh00] that exploits
the isomorphism

(1 + pk)/(1 + pl) ∼= (pk/pl)+, for k subject to k ≤ l ≤ 2k.
1
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They compute successively generators and relations for the groups (1+pki)/(1+pli)
with ki = 2i < m, li = min(2i+1,m) and combine these.

In section 5 we describe how the p-adic logarithm and the Artin-Hasse logarithm
can be used to solve the discrete logarithm problem. This is described in detail in
[Coh00, chapter 4].

In section 6 we present an efficient algorithms for the computation of a basis of
the group of principal units and for the discrete logarithm combining methods from
sections 3, 4, and 5.

Applications of these algorithms to the computation of ray class groups, their
conductors, and the discriminants and signatures of the respective ray class fields
are presented in sections 7 and 8. They are also an important tool in the compu-
tation of ray class fields [Fie00, Coh00].

In section 9 we describe the respective algorithms in the case where k is a global
function field.

2. Notation

Throughout the paper a finite abelian group G is presented by a column vector
g ∈ Gm, whose entries form a system of generators for G, and by a matrix of
relations M ∈ Zm×n of rank m, such that vT g = 0 for v ∈ Zm if and only if v is
an integral linear combination of the rows of M . We note that for every a ∈ G
there is a v ∈ Zm satisfying a = vTg. If g1, . . . , gm is a basis of G, M is usually
a diagonal matrix. Algorithms for calculations with finite abelian groups can be
found in [Coh00] and [Sim94]. If G is a multiplicative abelian group, then vTg is
an abbreviation for gv1

1 · · · gvmm .
We denote the degree of k over Q by n. We denote an integral basis of the ring

of integers ok of k by a vector w ∈ ok
n. A matrix representation of an ideal a ⊂ ok

is a matrix A ∈ Zn×n such that Aw is a Z basis of a. If p ⊂ ok is a prime ideal we
write e for the ramification index and f for the inertia degree of p.

For the complexity considerations we fix the following notations. Let R be a ring
and a an ideal of R.

◦ We denote by Ma the number of bit operations needed for multiplying two
elements in R modulo a.
◦ Let a, b ∈ R. The number of bit operations needed for finding an element
q ∈ R with a ≡ q · b mod a is denoted by Da.
◦ The number of bit operations for multiplying a k× l-matrix with a l×m-

matrix over a ring R is denoted by MR(k, l,m).
◦ Denote by TR(n) the number of bit operations required for triangularizing

a n× n matrix over the ring R.
◦ Let A be a matrix in Z

n×n whose coefficients are bounded by a. We
denote by Sa the number of bit operations needed to compute the Smith
Normal Form S of A and transformation matrices TL and TR such that
S = TLATR.

3. Principal Units

In the sequel we present several results about principal units (also called one-
units), for details we refer to [Has80, chapter 15], and apply these to the compu-
tation of the multiplicative group of residue class rings [Pau96]. We assume that
p is the unique rational prime contained in p. An element ην ∈ 1 + bp is called a
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principal unit of level ν, iff ην ≡ 1 mod bp
ν . Every principal unit η ∈ 1 + bp has

a unique representation η =
∏∞
ν=1(1 + aνπ

ν), where the aν are from a fixed set of
representatives of op/bp and π ∈ p \ p2. The groups (1 + bp

m)/(1 + bp
m+1) are

isomorphic to (op/bp)+.
The p-th power rule yields that the p-th powers of principal units generators of

a level are generators for principal units of further levels.

Theorem 3.1 (p-th power rule). Let e be the ramification index of bp and ην ≡
1 + aπν mod bp

ν+1, where a is in op. Let p = −πeε be the factorisation of p where
ε is a unit. Then the p–th power of ην satisfies

ηpν ≡


1 + apπpν mod∗ bp

pν+1 if ν < e
p−1 ,

1 + (ap − εa)πpν mod∗ bp
pν+1 if ν = e

p−1 ,

1 − εaπν+e mod∗ bp
ν+e+1 if ν > e

p−1 .

The maps h1 : a+bp 7−→ ap+bp and h3 : a+bp 7−→ −εa+bp are automorphisms of
(op/bp)+, whereas h2 : a+ bp 7−→ ap− εa+ bp is in general only a homomorphism.

This has the following consequence. If η1ν , . . . , ηfν is a system of generators for
the level ν < e

p−1 (for the level ν > e
p−1 ), then ηp1ν , . . . , η

p
fν is a system of generators

for the level pν (for the level ν + e). Levels based on the level ν = e
p−1 need to be

discussed separately.

Lemma 3.2. The kernel of h2 is of order 1 or p.

The systems of generators for the levels ν ≥ e
p−1 + e = pe

p−1 are obtained from
the systems of generators for the levels ν′ < pe

p−1 . The systems of generators for
the levels ν with p | ν are obtained from systems of generators for lower levels. We
define the set of fundamental levels Fe of bp by

Fe :=
{
ν | 0 < ν < pe

p−1 , p - ν
}
.

All levels can be obtained from the fundamental levels via the substitutions pre-
sented above. Note that the cardinality of Fe is e.

The next statement is deduced from the basis representation of the principal
units in Hasse’s book [Has80, p. 238]. The proof also gives an algorithm for solving
the discrete logarithm problem in (1 + p)/(1 + pm).

Theorem 3.3 (Basis Representation, case I). If

i.) (p− 1) does not divide e or
ii.) h2 is an isomorphism or
iii.) m < e

p−1 holds,

then the class [η] ∈ (1 + bp)/(1 + bp
m) has the basis representation

[η] =
∏
ν∈Fe

f∏
i=1

[ηiν ]aiν (0 ≤ aiν < ord([ηiν ])) .
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The ηiν are given in the form ηiν = 1 + ωiπ
ν for a fixed set of representatives of a

Z/pZ - basis ω1, . . . , ωf of op/bp in op. The order of ηiν is ord([ηiν ]) = psν with

sν =
{

0, ν ≥ m
s1ν + s2ν + 1, ν < m

s1ν =

{
blogp

m−1
ν c, m ≤ pe

p−1

blogp
pe

ν(p−1)c, m > pe
p−1

s2ν =

{
0, m ≤ pe

p−1

bm−1−νs1ν
e c, m > pe

p−1 .

Proof. We begin by computing the orders of the ηiν and show that we have a basis
representation afterwards.

If ν ≥ m, then ord([ηiν ]) = 1 holds. For ν < m ≤ pe
p−1 the generators of the

fundamental level ν ∈ Fe are generators of the levels ps1ν , where s1 ∈ Z>0 with
ps1ν < m.

We now look for the maximal s1ν fulfilling the last inequality. With ps1νν ≤ m−1
we get s1ν = blogp(

m−1
ν )c. Hence ps1νν is the maximal level (1 + bp)/(1 + bp

m) for
which ηiν is a system of generators. With the p-th power rule and the choice of s1ν

we get ηp
s1ν+1

iν ≡ 1 mod bp
m. Hence the order of the class [ηiν ] in (1+bp)/(1+bp

m)
is ps1ν+1.

For m > pe
p−1 the ηiν are the generators of the levels ps1ν+s2e where s1, s2 ∈ Z>0

satisfy ps1ν+s2e < m and ps1ν < pe
p−1 . We are looking for the maximal level, whose

generators are p-th powers of ηiν . As above s1ν is calculated for m = pe
p−1 . Then

ps1νν + s2e ≤ m − 1 holds and we get s2ν = bm−1−ps1ν ν
e c for the maximal s2ν for

which the inequality holds. As above the order of [ηiν ] is increased by a power of p
and we obtain sν = s1ν + s2ν + 1.

We show by induction on m that we indeed have a basis representation. Let
ω1, . . . , ωf be fixed representatives Z/pZ-basis of op/bp in op and η ∈ 1 + bp. We
denote the class of η in (1 + bp)/(1 + bp

k) by [η]k.
We start with the case (p − 1) - e. The class of η in (1 + bp)/(1 + bp

2) has the
basis representation

η ≡
∏
ν∈Fe

f∏
i=1

(1+ωiπν)aiν mod bp
2

(
0 ≤ aiν < ord([1 + ωiπ

ν ]1) =
{

1, ν 6= 1
p, ν = 1

)
.

Next we assume that the basis representation of [η]k in (1 + bp)/(1 + bp
k) is known

for k < m:

η ≡
∏
ν∈Fe

f∏
i=1

(1 + ωiπ
ν)aiν mod bp

k (0 ≤ aiν < ord([1 + ωiπ
ν ]k)).

We construct b11, . . . , bfe satisfying

η ≡
∏
ν∈Fe

f∏
i=1

(1 + ωiπ
ν)biν mod bp

k+1 (0 ≤ biν < ord([1 + ωiπ
ν ]k+1)).
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Let ν′ ∈ Fe be the fundamental level for k. There exist s1, s3 with s1 = max{s ∈
Z | ν′ps < min(k, pe

p−1 )} and k = ν′ps1 + s3e. Then

η′ =
η∏

ν∈Fe
∏f
i=1(1 + ωiπν)aiν

is a principal unit of level k. Let ω′1, . . . , ω
′
f subject to ω′i = hs33 (hs11 (ωi)). There

exist c1, . . . , cf with 0 ≤ ci < p with

η′ ≡
f∏
i=1

(1 + ω′iπ
k)ci mod bp

k+1 .

Hence, we obtain

η ≡
∏
ν∈Fe

f∏
i=1

(1 + ωiπ
ν)aiν

f∏
i=1

(1 + ω′iπ
k)ci mod bp

k+1 .

The ωi were chosen to satisfy (1 + ωiπ
ν′)p

s1+s2 ≡ (1 + ω′iπ
k) mod bp

k+1, and we
conclude

f∏
i=1

(1 + ω′iπ
k)ci ≡

f∏
i=1

(1 + ω′iπ
ν′)cip

s1+s2 mod bp
k+1.

With biν :=
{
aiν , ν 6= ν′

aiν + cip
s1+s2 , ν = ν′

we finally get the representation

η ≡
∏
ν∈Fe

f∏
i=1

(1+ωiπν)biν mod bp
k+1

(
0 ≤ biν <

{
ord([1 + ωiπ

ν ]k), ν 6= ν′

p ord([1 + ωiπ
ν ]k), ν = ν′

)
.

The generators of the level ν′ are the generators of the new level k. It follows from
the p-th power rule that the order of (1 + ωiπ

ν′) increases by the factor p and that
the orders of the other generators do not change.

In case (p− 1) | e the proof is analogous, we just need to use a different isomor-
phism, h2 : ω 7→ pω − εω, to proceed from level e

p−1 to level pe
p−1 . �

Proposition 3.4. In case I (see theorem 3.3) a basis of (1 + p)/(1 + p)m can be
computed in O

(
ef log pe

p−1 Mpm
)

bit operations.

The multiplicative groups (1+bp)/(1+bp
m) and (1+p)/(1+pm) are isomorphic

and since we chose π and ω1, . . . , ωf in ok, the generators of (1 + bp)/(1 + bp
m) are

generators of (1 + p)/(1 + pm).
Hence a basis of the group (1 + p)/(1 + pm) can be computed easily if (p − 1)

does not divide e or h2 is an isomorphism or m < e
p−1 holds. The proof of theorem

3.3 above yields an algorithm for solving the discrete logarithm problem in (1 +
p)/(1 + pm).
Algorithm 3.5 (Discrete logarithm, principal units, case I).

Input: η ∈ 1 + p, ok, p ⊂ ok, e, f , p, m ∈ Z>0, a basis (η11, . . . , ηfe) of
(1 + p)/(1 + pm) and a system of representatives (ω1, · · · , ωn) of
a Z/pZ-basis of ok/p in ok as in theorem 3.3.

Output: a ∈ Zef such that [aT (η11, . . . , ηfe)] = [η].
◦ Set a← 0 ∈ Zfe.
◦ For all levels 1 ≤ ν < m do:

◦ Find base level ν′ of ν.
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◦ Compute the number of substitutions s1, s2, s3.
◦ Set ω′i ← hs33 (hs22 (hs11 (ωi))) for i = 1, . . . , f .
◦ Find c1, . . . , cf , such that (η − 1)/πν ≡

∑f
i=1 ciω

′
i mod p.

◦ Replace a1ν′ ← a1ν′ + ps1+s2+s3c1, . . . , afν′ ← afν′ + ps1+s2+s3cf .
◦ Replace η ← η/

∏f
i=1 η

ps1+s2+s3ci
iν′ .

◦ Return a.

For each computation of the discrete logarithm with algorithm 3.5 the val-
ues hs33 (hs22 (hs11 (ωi))) and ηp

s1+s2+s3

iν have to be computed. This can be done in
O
(
f(mef log pMpm

)
and O(mMpm) bit operations respectively.

Assuming the data above is known algorithm 3.5 returns the discrete logarithm
of η ∈ (1 + p)/(1 + p)m in O

(
m(Dpm

ok
+ TFp(f) + f log p ·Mpm)

)
bit operations.

If (p − 1) divides e and h2 is not an isomorphism the generators of the level
e
p−1 are not a complete system of generators for the level pe

p−1 . In order to obtain
the generators of the level e/(p− 1) the substitution h1 is applied pµ0−1 times to
the generators of the fundamental step e0 where pµ0−1(p − 1)e0 = e and p does
not divide e0. Since the order of the kernel of h2 is p in this case, we can find a
Z/pZ - basis ω1, . . . , ωf with ωp

µ0

1 − εωp
µ0−1

1 ≡ 0 mod p, so that ωp
µ0

1 generates the
kernel of h2. To complete the system of generators for the level pe

p−1 , we introduce
an additional generator ω∗ of ok/p which is not contained in the image of h2. If
xp − εx ≡ ω∗ mod p has no solution, then ω∗ is not contained in the image of h2.
Theorem 3.6 (Unique Representation, case II). Let (p − 1) | e and h2 not be an
isomorphism. Choose e0 and µ0 such that e = pµ0−1(p− 1)e0 and p does not divide
e0. Let ω1, . . . , ωf be a Z/pZ - basis of ok/p in ok subject to ωp

µ0

1 − εωp
µ0−1

1 ≡
0 mod p. Choose ω∗ ∈ ok such that xp − εx ≡ ω∗mod p has no solution. Then the
class [η] ∈ (1 + p)/(1 + pm) has the unique representation

[η] =
∏
ν∈Fe

f∏
i=1

[ηiν ]aiν [η∗]a∗

 0 ≤ a1e0 < pµ0

0 ≤ aiν < ord([ηiν ]) for (i, ν) 6= (1, e0)
0 ≤ a∗ < ord([η∗])


with ηiν = 1 + ωiπ

ν and η∗ = 1 + ω∗π
pµ0enul. The corresponding orders are

ord([ηiν ]) = psν for (i, ν) 6= (1, e0) and ord([η∗]) = ps∗+1, respectively, where
s∗ = bm−1−pµ0e0

e c and sν is as defined in theorem 3.3.

Proof. By the choice of ω1 and ω∗ the representation is unique. The order of [η∗]
is obtained as follows. e0 and µ0 were chosen subject to pe

p−1 = pµ0e0, therefore
η∗ = 1 + ω0π

pµ0e0 is a principal unit of level pµ0e0. The p-th powers of [η∗] are
contained in the systems of generators of the levels pµ0e0 + se. The maximal non–
negative s satisfying pµ0e0 + se ≤ m− 1 is s∗ = bm−1−pµ0e0

e c. �

We remark that we do not necessarily get a basis representation, since the order
of η1e0 is in general not pµ0 . However, in many cases the unique representation is
a basis representation.
Corollary 3.7 (Basis Representation, case IIa). If (p− 1) | e and the kernel of h2

is not trivial and
i.) p ≤ 3 and m ≤ 2e or
ii.) p > 3 and (p− 1)m ≤ (p+ 1)e,
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the unique representation in theorem 3.6 is a basis representation. In that case we
have ord([η1e0 ]) = pµ0 .

Proof. Let ν = e
p−1 = pµ0−1e0 and η = ηp

µ0−1

1e0
= (1 + ω1π

e0)p
µ0−1

, then η ≡
1 + aπν mod pν+1 holds. We determine the maximal exponent m for which the
congruence ηp ≡ 1 mod pm holds. With the p-th power rule and the choice of ω1

we get ηp ≡ 1 mod ppν+1. Comparing the summands with larger powers of p, the
proof of the p-th power rule in [Has80, p. 229] shows that

m ≤ min(2ν + e, (p− 1)ν + e) .

�

In the unique representation of η1e0 the exponent a1e0 was bounded by a1e0 <

pµ0 . We can represent ηp
µ0

1e0
by the other generators and get a relation [ηp

µ0

1e0
] =∏

i∈Fe
∏f
j=1[ηij ]aij [η∗]a∗ with a1e0 = 0. From this relation and the (known) orders

of the other generators a basis of the group (1 + p)/(1 + p)m can be derived by
computing the Smith Normal Form of the relation matrix.

A unique representation of an element in (1 +p)/(1 +p)m can be obtained easily
with a slightly modified version of algorithm 3.5. If the base level ν′ of a level ν is
e0 and ν ≥ pe/(p− 1) then ω′1 is set to hs33 (ω∗) and the vector a representing a up
to level ν has to be altered accordingly (note that a ∈ Zfe+1 in this case).

To obtain a set of generators of (1 + p)/(1 + pm) in case II and case IIa the
elements ω1 and ω∗ must be computed. Denote by Q the matrix representing the
Frobenius automorphism x 7→ xp in the finite field ok/p. Then ω0 is the pµ0−1-th
root of a nontrivial element from the kernel of Q − εI and ω∗ can be chosen from
ok/p \ range(Q− εI).
Proposition 3.8. In case IIa (see corollary 3.7) a basis of (1 + p)/(1 + pm) can
be computed in O

(
ef log pe

p−1 Mpm + TFp(f)
)

bit operations. In case II (see theorem
3.6) a set of generators and a relation matrix can be computed in O

(
ef log p(m +

e
p−1 )Mpm +m(Dpm + TFp(f))

)
bit operations.

Let
(
(η11, . . . , ηfe, η∗),M) be a representation of (1 + p)/(1 + pm) as given

by theorem 3.6. Let S = TLMTR be the Smith normal form of M . Then(
TR(η11, . . . , ηfe, η∗)T

)T is a basis of (1 + p)/(1 + pm) which can be computed
in O

(
(efm log p+ e2f2)Mm

p

)
bit operations.

Proposition 3.9. In case II a basis of the group (1+p)/(1+pm) can be obtained in
O
(
ef(m log p+ e

p−1 log p+ ef)Mpm +m(Dpm + TFp(f)) + S(ef)
)

bit operations. The

discrete logarithm of an element can be computed in O
(
m(Dpm

ok
+ TFp(f) + f log p ·

Mpm) + M(1, ef, ef)
)

bit operations.

4. Quadratic Methods

The quadratic method by Cohen, Diaz y Diaz, and Olivier [CDO96, CDO98,
Coh00] is based on the following fact.
Lemma 4.1. Let k be an algebraic number field with maximal order ok and let
p ⊂ ok be a prime ideal. If l ≤ m ≤ 2l then

Ψ : (1 + pl)/(1 + pm)→ (pl/pm)+, [1 + a] 7→ a

is an isomorphism.
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A basis of the additive group pl/pm can be computed easily. Let w be an integral
basis of ok, let pl and pm where 1 ≤ l ≤ m be given by the matrices A and B, so that
wl = Aw (respectively wm = Bw) is a Z-basis of pl (respectively pm). The matrix
BA−1 represents the elements of pm by the elements of pl, as wm = BA−1Aw =
BAwl Thus BA−1 is the matrix of relations of the additive group pl/pm and the
components of wl are its generators. Hence pl/pm is represented by (wl, BA−1). If
wl = (wl1, · · · , wln)T we get the representation

(g,M) :=


1 + wl1

...
1 + wln

 , BA−1


for (1 + pl)/(1 + pm) by generators and relations.

In order to obtain a representation of [b] ∈ (1 + pl)/(1 + pm) by g we need to
find a = (a1, · · · , an) with [b− 1] = [

∑n
i=1 aiwli], then [b] = [

∏n
i=1(1 +wli)ai ] holds

by lemma 4.1. Let b ∈ Zn with b− 1 = bw, then bw = aAw. A solution a ∈ Zn of
the equation b = aA gives the desired representation.

Let k, l,m with k ≤ l ≤ m and l ≤ m ≤ 2l be given. Denote the class 1 + a
modulo (1 + pj) by [1 + a]j .

By the isomorphism theorem the sequence

1 → (1 + pl)/(1 + pm) Ψ→ (1 + pk)/(1 + pm) Φ→ (1 + pk)/(1 + pl) → 1
[1 + a]m 7→ [1 + a]m 7→ [1 + a]l.

is exact.
By the definition of the map Φ we have Φ([h]m) = [h]l. We are looking for a

matrix P with N [h]m = PΨ([g]m). We compute the matrix P by applying the
method for computing the representation of elements in (1+pl)/(1+pm) to N [h]m.
We obtain the representation ((

h
g

)
,

(
N −P
0 M

))
.

for (1+pk)/(1+pm). In order to compute (1+p)/(1+pm) one computes iteratively

(1 + p)/(1 + p2), (1 + p)/(1 + p4), . . . , (1 + p)/(1 + p2s), (1 + p)/(1 + pm),

where s = blog2(m)c.
Algorithm 4.2 (Generators and relations, quadratic method).

Input: ok, p ⊂ ok,m ∈ Z>0, integral basis w of ok

Output: Generators and relations of (g,M) of (1 + p)/(1 + pm)
◦ Compute generators and relations (h,N) of (1 + p)/(1 + p2):

◦ Compute matrix representations A,B ∈ Zn×n of p, p2.
◦ Set g ← (g1, . . . , gn) with gi = 1 +Awi for 1 ≤ i ≤ n.
◦ Set M ← BA−1.

◦ Set k ← 2, s← 2.
◦ While l 6= m:

◦ Set l← min(2s,m).
◦ Compute generators and relations (h,N) of (1 + pk)/(1 + pl):

◦ Compute matrix representations A,B ∈ Zn×n of pk, pl.
◦ Set h← (h1, . . . , hn) with hi = 1 +Awi for 1 ≤ i ≤ n.
◦ Set N ← BA−1.
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◦ Compute P , such that Nh = Pg using algorithm 4.3 below.

◦ Replace g ←
(
h
g

)
, M ←

(
N −P
0 M

)
.

◦ Set k ← l, s← s+ 1.
◦ Return (g,M).

A representation of the class of η ∈ ok in (1 + p)/(1 + pm) by generators as
computed with algorithm 4.2 can be obtained with the following algorithm.
Algorithm 4.3 (Discrete logarithm in (1 + p)/(1 + pm), quadratic method).

Input: A maximal order ok, a integral basis w = (w1, . . . , wn) of ok, a
prime ideal p ⊂ ok, m ∈ N, η ∈ 1 + p

Output: a such that [ag] = [η], where g is a set of generators of (1+p)/(1+
pm) as given by algorithm 4.2

◦ Set k ← 1, a← ( ).
◦ While k 6= m:

◦ Set l← min(2k,m).
◦ Discrete logarithm in in (1 + pk)/(1 + pl):

◦ Find b ∈ Zn, such that η − 1 = bw.
◦ Let A ∈ Zn×n be a matrix representation of pk. Set c← bA−1.
◦ Set η ← η · (

∏n
i=1(1 +Awi)ci)−1

◦ Replace a← (a c), k ← l.
◦ Return a.

Matrix representations of p, p2 to pm and the inverses of these matrices can be
computed in O

(
logm(nMpm + TZ(n))

)
bit operations. Algorithm 4.3 computes a

representation of an element of (1 + p)/(1 + pm) in O
(
nm log pMpm + logmDpm

)
bit operations. Algorithm 4.2 returns generators and relations of (1 + p)/(1 +
pm) in O

(
n2m log pMpm + n logmDpm + logmTZ(n)

)
bit operations including the

computation of the data above.
Proposition 4.4. A basis of the group (1 + p)/(1 + pm) can be obtained with
the number of bit operations being O

(
nm log p(n + logm)Mpm + n logmDpm +

logmTZ(n)) + S(n logm,n logm)
)

and the discrete logarithm can be computed in
O
(
nm log pMpm + logmDpm + M(1, n logm,n logm)

)
5. p-adic Logarithms

In this section we present a third approach to the computation of the discrete
logarithm in (1+p)/(1+pm). These methods can also be used for the computation
of generators and relations of (1 + p)/(1 + pm) [Coh00, chapter 4].

For levels greater than e/(p− 1) the p-adic logarithm can be used for the com-
putation of the discrete logarithm. Define

logp(1 + x) :=
∞∑
i=1

(−1)i−1x
i

i
and expp(x) :=

∞∑
i=0

xi

i!
.

Proposition 5.1. Let p be a prime ideal over the prime number p with ramification
index e = vp(p).

i.) The expansion for logp(1+x) converges p-adically if and only if vp(x) ≥ 1.
ii.) Let x, y ∈ k with vp(x) ≥ 1 and vp(y) ≥ 1 then logp

(
(1 + x)(1 + y)

)
=

logp(1 + x) logp(1 + y).
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iii.) Let x ∈ k with vp(x) > e/(p−1) then logp

(
expp(x)

)
= x and expp

(
logp(1+

x)
)

= 1 + x.
iv.) For any integers l and m with m > l ≥ 1 + be/(p − 1)c the functions

logp and expp are inverse isomorphisms between the multiplicative group
(1 + pl)/(1 + pm) and the additive group pl/pm.

Remark 5.2. Assume vp(x) > e/(p− 1) and i = ps. Then

vp(xi/i) = vp(xp
s

/ps) = psvp(x)− es > pse/(p− 1)− es > e(ps−1 − s).

The inequality e(ps−1 − s) > m holds if i = ps > pm ≥ pm/e. Thus logp can be
approximated by computing the first m summands of the series for p - i and the
summands up to i = pm for p | i.

The p-adic logarithm modulo pm can be computed in O(mMpm) bit operations.
Artin-Hasse logarithms yield an inductive method for the computation of the

group (1 + p)/(1 + pm) of the discrete logarithm similar to the quadratic methods
in the previous section. The quadratic methods exploited the isomorphisms (1 +
pk)/(1 + p2k) ∼= pk/p2k; the Artin-Hasse logarithm gives the isomorphisms (1 +
pk)/(1 + ppk) ∼= pk/ppk. Hence less iterations are necessary using the Artin-Hasse
logarithm. Define

L(1 + x) :=
p−1∑
i=1

(−1)i−1x
i

i
and E(x) :=

p−1∑
i=0

xi

i!
.

Proposition 5.3. Let p be a prime ideal over the prime number p.
i.) The nonzero monomials of the polynomial

L
(
(1 + x)(1 + y)

)
− L(1 + x)− L(1 + y)

are of the form xkyl with k + l ≥ p.
ii.) If vp(x) = k then E(L(1 + x)) ≡ 1 + x mod ppk.
iii.) If k < l ≤ pk then the map

(1 + pk)/(1 + pl)→ pk/pl, (1 + x) 7→ L(1 + x)

is a group isomorphism.

6. Computing the Group of Principal Units and the Discrete

Logarithm

A major advantage of the basis (respectively unique) representation of the prin-
cipal units as given in section 3 is that the structure of the group is given directly.
In section 8 we will see how the fact that we know which basis elements are gener-
ators for which level can be exploited in the computation of conductors of ray class
groups and more general ideal class groups. Very few computations are needed for
the computation of a basis of the multiplicative group of the residue class ring.

We combine the methods from sections 3, 4, and 5 to a more efficient algorithm.
We use the generators given by theorems 3.3 and 3.6, the quadratic methods for
the discrete logarithm for levels up to pe

p−1 ; for levels greater than pe
p−1 we use the

p-adic logarithm for the computation of the discrete logarithm.
The following algorithm is formulated for case I only. A version for case II

requires only minor changes.
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Algorithm 6.1 (Discrete Logarithm, combined).
Input: η ∈ 1 + p, ok, p ⊂ ok, e, f , p, m ∈ Z>0, a basis (η11, . . . , ηfe) of

(1 + p)/(1 + pm) as in theorem 3.3.
Output: a ∈ Zef such that [aT (η11, . . . , ηfe)] = [η].

◦ Set k ← 1, a = (a11, . . . , afe)← 0.
◦ While k < min

{
m, d pep−1e

}
:

◦ Set l← min
{

2k,m, d pep−1e
}

.

◦ Compute a basis ρ11 = ηp
s1

1t1
, . . . , ρf1 = ηp

s1

ft1
, . . . , ρfr = ηp

st

ftr
of

(1 + pk)/(1 + pl).
◦ Find (c11, . . . , cfr) ∈ N with c11(ρ11 − 1) + · · ·+ cfr(ρfr − 1) = η− 1.
◦ Replace η ← η/

∏r
ν=1

∏f
i=1 ρ

ciν
iν .

◦ Replace a1t1 ← a1t1 + ps1c11, . . . , aftr ← aftr + psrcrf .
◦ Replace k ← l.

◦ If k < m then:
◦ Compute a basis ρ11 = logp η

ps1

11 , . . . , ρf1 = logp η
ps1

f1 , . . . , ρfe =

logp η
pse

fe of pk/pm.
◦ Set γ ← logp η. Find (c11, . . . , cfe) ∈ N. with c11ρ11+· · ·+cfeρfe = γ.
◦ Replace a←

(
a11 + ps1c11, . . . , aef + psecfe

)
◦ Return a.

The number of basis elements for (1+pk)/(1+pl) which are p-th powers of gener-
ators of lower levels is at most f pe

p−1 − ef . Thus the ρiν for levels less than pe
p−1 can

be computed in O
(
log pe

p−1

(
pe
p−1 − e

)
Mpm

)
bit operations. The ρiν for levels greater

than pe
p−1 can be computed in O

(
ef log pMpm +mMpm

)
bit operations. In addition

it is convenient to have matrix representations of the ideal pp, pp
2
, . . . , p

pe
p−1 , pm in

order to reduce the representations in pk/pl. The matrix representations of these
ideals can be computed in O

(
logm(nMpm + TZ(n))

)
bit operations. Computing

the Hermite Normal form of the matrices (ρ11 . . . ρfe) in advance will speed up
the computation of the discrete logarithm, this can be done in O

(
log pe

p−1 TZ(n)
)
.

Proposition 6.2. In case I and case IIa (case II) a basis (unique) representation
of an element in (1 + p)/(1 + pm) can be computed in

O
((
m+ log pe

p−1ef log p
)
Mpm

)
bit operations. Assume m ≥ pe

p−1 . Then in case I and case IIa a basis of (1 +
p)/(1 + pm) can be computed in

O
(
(n logm+m+ ef log p)Mpm + logmT(n)

)
bit operations. In case II a basis of (1 + p)/(1 + pm) can be computed with the
number of bit operations being

O
(
(n logm+m+ ef log p log pe

p−1 )Mpm + logmT(n) + S(ef)
)
.

The quadratic method from section 4 is implemented in the computer alge-
bra system PARI/GP [BB+99]. In the computer algebra systems KASH/KANT
[Po+00, DF+96] and MAGMA [BC95] a combination of the methods from sections
3 and 4 is used.
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7. Computing Ray Class Groups

Let m0 be an integral ideal and m∞ a formal product of real infinite places of k.
Then m := m0m∞ is called a congruence module. Let a(i) ∈ C be the ith conjugate
of a ∈ k. Multiplicative congruences with respect to a finite place contained in the
congruence module are defined by

a ≡ 1 mod∗ pm :⇔ vp(a− 1) ≥ m

and for a real infinite place p
(i)
∞ by

a ≡ 1 mod∗ (p(i)
∞ )m :⇔ a(i) > 0.

Let Im := {a ∈ Ik | gcd(a,m0) = 1} and Hm := {(a) ∈ Hk | a ≡ 1 mod∗ m}. Then
the ray class group modulo m is defined as Clmk := Im/Hm.

Let Hm := {a ∈ Hk | gcd(a,m0) = 1}}, km := {a ∈ k | a ≡ 1 mod∗ m},
km := {a ∈ k | gcd((a),m0) = 1}, Uk the group of units of ok and Um := {u ∈
Uk | u ≡ 1 mod∗ m}. We will compute the ray class group Clmk in the way the
following diagram from [Lan94] suggests.

Im → Ik

| |
km → Hm → Hk

| |
Uk → Ukkm → Hm

| |
Um → km

We note that corresponding vertical lines represent isomorphisms of factor groups.
Horizontal arrows denote natural embeddings.
Algorithm 7.1 (Ray Class Group).

Input: ok,Uk,Clk,m = m0 m∞
Output: Clmk
◦ Compute km/km

∼= (ok/m0)∗ ×
∏

p|m∞R
∗/R∗>0.

◦ Compute Uk/Um via the image of Uk in km/km.
◦ Factor (km/km) by (Uk/Um).
◦ Compute generators of Clk which are prime to m0.
◦ Compute a basis of Clmk .

We already described the computation of (ok/m0)∗. For the computation of
km/km we also need generators of km∞/km∞

∼=
∏

p|m∞R
∗/R∗>0. Assume m∞ =

p
(ν1)
∞ · · · p(νs)

∞ . We are looking for generators ϑi of the group km∞/km∞ satisfying
ϑi ≡ 1 mod∗ m0. The approximation theorem assures the existence of ϑ1, . . . , ϑs
subject to

ϑj ≡ −1 mod∗ p
(νj)
∞ ,

ϑj ≡ 1 mod∗ p
(νi)
∞ , i = 1, . . . , s, i 6= j ,

ϑj ≡ 1 mod∗ m0 .

Let a1, . . . , an be a basis of m0, and let x ∈ Zn be a solution of the system of
inequalities

1 + x1a
(νj)
1 + · · ·+ xna

(νj)
n < 0

1 + x1a
(νi)
1 + · · ·+ xna

(νi)
n > 0, i = 1, . . . , s, i 6= j .
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Then ϑj = x(a1, . . . , an)T fulfils the congruences listed above. To obtain x we solve
a system of linear equations

1 + x̄1a
(νj)
1 + · · ·+ x̄na

(νj)
n = −a

1 + x̄1a
(νi)
1 + · · ·+ x̄na

(νi)
n = a, i = 1, . . . , s, i 6= j

for a := 1
2

∑n
i=1 |ai|. From the real solution x̄ of that system we then obtain x by

rounding all coordinates to their closest integer: xi = bx̄ie (1 ≤ i ≤ s).
We compute the group U/Um via the image of U in km/km. For this we calculate

the images of a system of generators of U in km/km. Then the factor group of the
finite groups km/km and U/Um is calculated by computing a normal form for the
matrix of relations for the generators as outlined in [CDO96].

Algorithms for the computation of class groups of algebraic number fields are
presented in [Coh93], [Hes96], and [PZ89]. Generators of the class group which are
prime to m0 are easily calculated by algorithm 7 in [Coh96]. It remains to compute
the factor group of Im/Hm and Hm/Hm to get Clmk = Im/Hm.

8. Computing Conductors, Discriminants and Signatures

Let m be a congruence module and Clmk = Im/Hm be the ray class group modulo
m. Let Jm be an ideal group which can be defined with m, i.e. which satisfies
Im ⊃ Jm ⊃ Hm

The conductor f of an ideal group is the smallest congruence module f with which
that ideal group can be defined.

In the sequel we explain how to calculate conductors of ray class groups. It is
clear from the diagram of the previous section that we do not need to compute the
entire ray class group. It clearly suffices to compute Hm/Hm

∼= (km/km)/(U/Um).
An ideal group, which can be defined with m1 and with m2, can also be defined
with gcd(m1,m2). Hence, if for each p | m the integer jp is the largest exponent
such that np = m/pjp is integral and that Hnp/Hnp = Hm/Hm, then f is is the
greatest common divisor of all these np. We determine jp as the largest integer i
for which the groups Hm/Hm and Hm/pi/Hm/pi still coincide.

It can be easily deduced from theorems 3.3 and 3.6 that for any prime ideal p
and any k > 0 the same representatives for the classes of generators can be used
for kpk/kpk and kpk−1

/kpk−1 . With respect to basis representations of (ok/p
k)∗ we

only need to change the orders of the generators to get a basis for (ok/p
k−1)∗. In

the case of a unique representation, also the relation for ηp
µ0

1e0
must be replaced by

the order of η1e0 in the step from level k = pe
p−1 to level k − 1 = pe

p−1 − 1.

Since the same representatives for the classes of generators of kpk/kpk and
kpk−1

/kpk−1 can be chosen, the representation of the image of the generators of U
by the generators of kpk/kpk is a representation by the generators of kpk−1

/kpk−1

as well. So the relation matrix of (kpk−1
/kpk−1)/(U/Upk−1) can be derived from

the relation matrix of (kpk/kpk)/(U/Upk) by a simple change of the orders of the
generators and, in the case of a unique representation, also by replacing the relation
for η1e0 as described above.

The same can be done for (kn/kn)/(U/Un) and (kn/p/kn/p)/(U/Un/p) since
they are direct products of groups (ok/p

k)∗ and the corresponding groups for the
infinite places. A comparison can easily be carried out via the Hermite normal forms
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of the corresponding relation matrices. It is even faster to consider the diagonal
elements of the Hermite normal form of the first relation matrix and to determine
whether the changed orders for the second matrix change the Hermite normal form.
The infinite places are treated similarly.

Let Jm be an ideal group defined with m. For n | m let Φ denote the surjection
from Clmk to Clnk. For the computation of the conductor of Im/Jm we use that
Clmk /(Jm/Hm) ∼= Im/Jm. For Clnk/Φ(Jm/Hm) = Clmk /(Jm/Hm) the ideal class
group Im/Jm can also be defined with n. We proceed as in the case of ray class
groups; we compare the groups Clnk/Φ(Jm/Hm) and Clmk /(Jm/Hm) via their rela-
tion matrices, which in addition to the relations for Hm/Hm contain the relations
for the generators of Clk and the relation for the factorisation by Jm/Hm.

Let K/k be the ray class field corresponding to the module m. In [CDO98,
Theorem 3.3] Cohen, Oliver and Diaz y Diaz develop a formula for the relative
discriminant dK/k. For n | m set hn,Jm := #(Clnk/Φ(Jm/Hm)). Then the relative
discriminant is

dK/k =
∏
p|m0

p
mphm,Jm−

∑
1≤k≤mp

h
m/pk,Jm .

The ray class numbers hm/pk,Jm
can be easily computed with the same methods

which we used for the conductor. Finally, let (r1, r2) be the signature of k and
(R1, R2) the signature of K. Specialising the formula for signatures of ray class
fields from [CDO98, Theorem 3.3] we get R1 = r1hf,Jm .

9. The global function field case

In this section we discuss the respective theory and algorithms in the global
function field case.

9.1. Ray divisor class groups. Let k/Fq denote a global function field over the
finite field of q elements and characteristic p. Unlike the number field case, for
global function fields there is no canonical maximal order. It is hence more natural
to work with divisors instead of ideals. Let D denote the group of divisors and P
the subgroup of principal divisors (a), a ∈ k∗. The divisor class group Cl is defined
as D/P.

Let m ∈ D be an effective divisor, which we again call congruence module. For
a ∈ k we say that a ≡ 1 mod∗ m, if vp(a−1) ≥ vp(m) for all places p|m. We further
define the subgroups Dm := { a ∈ D | gcd(a,m) = 0 }, Pm := P ∩Dm, km := { a ∈
k∗ | (a) ∈ Pm }, km := { a ∈ km | a ≡ 1 mod∗ m } and Pm := { (a) ∈ Pm | a ∈ km }.
The ray divisor class group Clm for the congruence module m is defined as Dm/Pm.

Let H be a subgroup of Dm and UH := { a ∈ km | (a) ∈ H }. We then obtain the
following diagram, similar to the number field case:

(1)

Dm → D
| |

km → Pm → H + Pm → H + P
| | |

UH → UH km → H ∩Pm + Pm → H + Pm

| |
UH ∩ km → km.

Again corresponding vertical lines represent isomorphisms of factor groups and
horizontal arrows denote natural embeddings. For H = {0} we have UH = F

∗
q .
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Using this in the diagram (1) we get the canonical exact sequence of abelian groups

(2) 0 −→ F
∗
q −→ km/km −→ Clm −→ Dm/Pm −→ 0.

In view of [CDO98, Proposition 1.2] this means that in order to compute Clm we
need to compute generators and relations for Dm/Pm and km/F∗q km. To link these
we also need to compute the actual elements of km/F∗q km corresponding to relations
of Dm/Pm and to express these in the generators of km/F∗q km.

The computation of generators and relations for Cl = D/P is described in
[Hes99]. From these generators and relations corresponding to divisors and principal
divisors in Dm and Pm respectively can for example be obtained by applying the
approximation theorem analogously to the number field case. The actual element
in km (mod F∗q km) corresponding to a relation, i.e. the generator of a principal
divisor in Pm, can efficiently be computed. Furthermore, it is also possible to find
the expression of a divisor class (given by a divisor) in the generators of Cl. For
details we refer to [Hes99].

Once generators and relations for Clm are computed as above the task of ex-
pressing a given element of Clm represented by a divisor a ∈ Dm can be solved as
follows: We first express a in the representatives of the generators of Dm/Pm, up to
a principal divisor (b) in Pm for b ∈ km. Then b is expressed in the representatives
of the generators of km/F∗q km, up to an element of F∗q km.

9.2. Multiplicative groups of residue class rings. We are left to describe how
generators and relations for km/F∗q km are computed and how an element of km

(mod F∗q km) can be expressed in these generators.
We first consider km/km. Let op denote the valuation ring of p such that p is

the maximal ideal of op. It is straightforward to see that the canonical map of
multiplicative groups km −→

∏
p|m
(
op/p

vp(m)
)∗ has kernel km. Using the weak

approximation theorem we also see that it is surjective so that we obtain km/km
∼=∏

p|m
(
op/p

vp(m)
)∗, in analogy to the number field case. Once we have generators

and relations for each of the
(
op/p

vp(m)
)∗ their disjoint union will give generators

and relations for km/km. We remark that we do not have to compute actual
elements of km. We obtain generators and relations for km/F∗q km by expressing a
generator of F∗q in the generators of km/km and by adding the obtained expression
to the relations of km/km. Finally, to find the expression of an element of km

(mod F∗q km) in the generators we do so for every local factor
(
op/p

vp(m)
)∗.

We next need to explain how generators and relations for
(
op/p

m
)∗ for m ∈ Z≥1

can be determined and how an element in o∗p (mod pm) can be expressed in these
generators. In analogy to the number field case we have

(
op/p

m
)∗ ∼= (op/p)∗× (1 +

p)/(1 + pm) where (op/p)∗ is mapped to the group of (qdeg(p) − 1)th roots of unity
in
(
op/p

m
)∗.

It is well known that the order of (1 + p)/(1 + pm) is (qdeg(p))m−1. For a ∈ R≥0

and setting min{ } := 0 define daep := min{ pl | a ≤ pl, l ∈ Z≥0 }. The following
lemma immediately gives us generators and relations for (1 + p)/(1 + pm).

Lemma 9.1. Let π ∈ p\p2 and B be a system of representatives in op of the Fp-
vector space op/p. Let Uβ,j denote the subgroup of (1 + p)/(1 + pm) generated by
(1+βπj)U (m)

p for β ∈ B and j ≥ 1, j coprime to p. The groups Uβ,j have pairwise
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trivial intersection and are of order |Uβ,j | = dm/jep. Moreover,

(1 + p)/(1 + pm) =
∏
{Uβ,j |β ∈ B, 1 ≤ j ≤ m− 1, gcd(j, p) = 1 }.

Proof. Follows from [Aue99, p. 39]. �

Assume for given a ∈ (1 + p)/(1 + pm) we want to find the expression of a as
a power product of the generators of the Lemma. The most elementary way of
achieving this is by a Gaussian elimination procedure as done in Algorithm 3.5.
The methods of section 4 can also be used. The p-adic logarithm in section 5 does
not carry over, because we work in characteristic p and would have to divide by p
in the series expansion of logp and expp. However, the Artin-Hasse logarithm can
be applied, Proposition 5.3 remains true in characteristic p. This appears to be a
very efficient way for computing the expression of a in the generators.

9.3. Conductors. Let H be a subgroup of Clm. If m′ ≤ m is another congruence
module we have a natural epimorphism Φm′ : Clm −→ Clm′ . There is a unique
smallest congruence module f ≤ m such that Clf/Φf(H) ∼= Clm/H. This congru-
ence module is called the conductor of H. The conductor of Clm is defined to be
the conductor of its zero subgroup H = {0}.

Using the definition there is a straightforward way of computing the conductor
of a subgroup H of Clm. Namely, we successively check for all smaller congruence
modules m′ < m whether the isomorphy holds. If not, we take the next m′. If yes,
we replace m by m′ and H by Φ(H) and start from the beginning. At the end, m
is smallest possible. Because of the uniqueness property m must be the conductor
of the original H.

A more explicit way is given by the diagram (1) above. Assume the subgroup
of Clm is the image of a divisor group H ⊆ Dm. The conductor is a smallest
congruence module m′ such that UH km′/km′

∼= UH km/km. In the case of H = {0}
we see from the exact sequence (2) above and since the cardinality of (op/p

m)∗

changes if m changes that m already is the conductor of Clm. The computation of
the conductor for general H using the isomorphy amounts to two major steps:

In the first step we need to determine generators of UH . If h1, . . . , hr are the
divisor classes in Cl of the generators of H we compute the kernel of Zr −→ Cl,
(λi)i 7→

∑
i λihi. To carry out this computation we need to know generators and

relations of Cl and need to express the classes hi in these generators. From the
kernel we obtain a basis of H ∩Pm and can reconstruct the corresponding elements
in UH .

In the second step we express the generators of UH in the generators of
km/km. Joining these expressions and the relations of km/km yields the relations
of km/UH km. Now, analogously to the number field case, for smaller m′ there is
no need to recompute the expressions for the generators of UH . We only have to
adjust the orders of the generators of km/km in the relation matrix for km′/UH km′ .
Once we obtain a different relation module, m′ is too small. Successive testing and
descending again exhibits the smallest congruence module preserving the isomor-
phy.

9.4. Class field discriminants and genera. Let m be a congruence module.
From class field theory we know that the abelian extensions K/k of conductor less
than or equal to m correspond inclusion reversing to subgroups H of Clm of finite
index. The conductor of K/k is equal to the conductor of H.
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Let hm′,H := Clm′/Φm′(H) for the natural epimorphism Φm′ : Clm −→ Clm′
and let dK/k denote the discriminant of K/k. Using the same proof as in [CDO98]
we obtain

dK/k = (hm,H) m−
∑
p|m

vp(m)∑
k=1

hm−kp,H

 p.

Let deg(H) := min{deg(a) | a + Pm ∈ H }. Because H is of finite index in Clm,
deg(H) ≥ 1 holds. Let Fq1 be the full constant field of K. From class field theory
we have [K : k] = hm,H and [Fq1 : Fq] = deg(H). Furthermore, the norm of the
different of K/k down to k equals dK/k, and [Fq1 : Fq]-times the degree of the
different equals the degree of the discriminant. If gk and gK denote the genus of k
and K respectively we obtain from the Hurwitz genus formula

deg(H)(gK − 1) = hm,H

(
gk − 1 +

deg(m)
2

)
− 1

2

∑
p|m

vp(m)∑
k=1

hm−kp,H

deg(p).

Using the methods from section 9.3 we can compute the numbers hm−kp,H easily.
We are thus able to determine the discriminant dK/k and the genus gK.
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