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ABSTRACT. Let k be a global field with maximal order ok and let mg be an
ideal of 0. We present algorithms for the computation of the multiplicative
group (ox/mp)* of the residue class ring ox/mgp and the discrete logarithm
therein based on the explicit representation of the group of principal units
[Has80]. We show how these algorithms can be combined with other methods
[Coh00] in order to obtain more efficient algorithms. They are applied to
the computation of the ray class group CIlJ} modulo m = mgmeo, where meo
denotes a formal product of real infinite places, and also to the computation of
conductors of ideal class groups and of discriminants and genera of class fields.

1. INTRODUCTION

Let k be a number field with ring of integers ox and let my be an ideal of oy.
We describe how a basis of the multiplicative group (0x/mg)* can be computed and
how the discrete logarithm problem in (ox/mg)* can be solved.

Let Hp‘mo p" be the decomposition of my into a product of prime ideals. Then
the unit group (ox/mg)* of the residue class ring ox/mg satisfies

(ox/mo)™ = [T (ow/p™)".

plmo

Hence, the computation of (0x/mg)* is reduced to the computation of all (o /p™)*.
For non-zero prime ideals p of oy the completion of k with respect to the corre-
sponding non-archimedian exponential valuation v is denoted by k. Let 0, denote
the valuation ring of k, with unique maximal ideal b,. Then

(01/p™)" = (0 /0p™)" == (0p/by) " X (1+bp)/(14b,™) = (01/p)" x (14p)/(1+p™).

In order to determine (ox/p™)* we therefore compute (0/p)* and (1+p)/(1+p™).
Algorithms for the computation of a primitive element of the residue class field
(ox/p)* are contained in the literature, for instance a method by Gauss in [PZ89).
For a survey of algorithms for the discrete logarithm in the finite field (ox/p)* we
refer the reader to [SWD].

In section 3 we present a method for the computation of a basis of (1+p)/(14+p™)
[Pau96] which is derived from the explicit representation of the principal units (or
one-units) of a local field as described in [Has80, chapter 15].

In section 4 we present an algorithm for the computation of (1+p)/(1+p™) by
H. Cohen, M. Olivier and F. Diaz y Diaz [CDO96, CDO98, Coh00] that exploits
the isomorphism

(1+pF) /(1 +ph) = (p*/pH)*, for k subject to k <1 < 2k.
1
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They compute successively generators and relations for the groups (1+p*i)/(1+p')
with k; = 2 < m,l; = min(2""!, m) and combine these.

In section 5 we describe how the p-adic logarithm and the Artin-Hasse logarithm
can be used to solve the discrete logarithm problem. This is described in detail in
[Coh00, chapter 4].

In section 6 we present an efficient algorithms for the computation of a basis of
the group of principal units and for the discrete logarithm combining methods from
sections 3, 4, and 5.

Applications of these algorithms to the computation of ray class groups, their
conductors, and the discriminants and signatures of the respective ray class fields
are presented in sections 7 and 8. They are also an important tool in the compu-
tation of ray class fields [Fie00, Coh00].

In section 9 we describe the respective algorithms in the case where k is a global
function field.

2. NOTATION

Throughout the paper a finite abelian group G is presented by a column vector
g € G™, whose entries form a system of generators for GG, and by a matrix of
relations M € Z™*" of rank m, such that v7'g = 0 for v € Z™ if and only if v is
an integral linear combination of the rows of M. We note that for every a € G
there is a v € Z™ satisfying a = vTg. If g1,...,gm is a basis of G, M is usually
a diagonal matrix. Algorithms for calculations with finite abelian groups can be
found in [Coh00] and [Sim94]. If G is a multiplicative abelian group, then vTg is
an abbreviation for g;* - - gim.

We denote the degree of k over Q by n. We denote an integral basis of the ring
of integers oy of k by a vector w € ox™. A matrix representation of an ideal a C ok
is a matrix A € Z™*™ such that Aw is a Z basis of a. If p C oy is a prime ideal we
write e for the ramification index and f for the inertia degree of p.

For the complexity considerations we fix the following notations. Let R be a ring
and a an ideal of R.

o We denote by M, the number of bit operations needed for multiplying two
elements in R modulo a.

o Let a,b € R. The number of bit operations needed for finding an element
q € R with a = ¢ - b mod a is denoted by Dg.

o The number of bit operations for multiplying a k x [-matrix with a [ x m-
matrix over a ring R is denoted by Mg(k, 1, m).

o Denote by Tg(n) the number of bit operations required for triangularizing
a n X n matrix over the ring R.

o Let A be a matrix in Z™*™ whose coefficients are bounded by a. We
denote by S, the number of bit operations needed to compute the Smith
Normal Form S of A and transformation matrices 77, and Tg such that
S =T, ATg.

3. PrINCIPAL UNITS

In the sequel we present several results about principal units (also called one-
units), for details we refer to [Has80, chapter 15], and apply these to the compu-
tation of the multiplicative group of residue class rings [Pau96]. We assume that
p is the unique rational prime contained in p. An element 7, € 1+ by is called a
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principal unit of level v, iff 7, = 1 mod b,”. Every principal unit n € 1+ b, has
a unique representation n = [[°~ (1 4 a, ), where the a, are from a fixed set of
representatives of o,/b, and 7 € p \ p2. The groups (1 + b,"™)/(1 + b, ') are
isomorphic to (o, /b,)T.

The p-th power rule yields that the p-th powers of principal units generators of
a level are generators for principal units of further levels.

Theorem 3.1 (p-th power rule). Let e be the ramification index of by, and n, =
1+ a7 mod bpyﬂ, where a is in 0y. Let p = —m° be the factorisation of p where
€ is a unit. Then the p—th power of n, satisfies

1 + aPrP¥ mod* bpp”+1 if v< pfl ,
— v * pr+1 . _ e
=<1 + (a?—ea)m® mod* b, 1 if v=3%5,
_ v+e * v+e+ . e
1 eam mod by if v> 51

The maps hy : a+by, — a? +by, and hs : a+b, — —ea+Dby, are automorphisms of
(0p/by)", whereas ho : a+ by, — aP —ea+ by, is in general only a homomorphism.

This has the following consequence. If 1y,,...,7n, is a system of generators for
the level v < p%l (for the level v > ]ﬁ), thennf,, ..., n?u is a system of generators
for the level pv (for the level v + ¢). Levels based on the level v = <5 need to be
discussed separately.

Lemma 3.2. The kernel of hy is of order 1 or p.

The systems of generators for the levels v > pil +e= % are obtained from

the systems of generators for the levels v/ < pp_ 7. The systems of generators for

the levels v with p | v are obtained from systems of generators for lower levels. We
define the set of fundamental levels F; of b, by

E:Z{V|O<V<I%,p1'l/}.

All levels can be obtained from the fundamental levels via the substitutions pre-
sented above. Note that the cardinality of F, is e.

The next statement is deduced from the basis representation of the principal
units in Hasse’s book [Has80, p. 238]. The proof also gives an algorithm for solving
the discrete logarithm problem in (1 + p)/(1 + p™).

Theorem 3.3 (Basis Representation, case I). If

i.) (p—1) does not divide e or
ii.) hg is an isomorphism or

iii.) m < pfl holds,

then the class [n] € (14 b,)/(1 +b,™) has the basis representation

!
) = I ITmal™ (0 < ai < ord(fna))) -

veF i=1
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The n;, are given in the form n,, =1+ w;w" for a fizved set of representatives of a
Z/pZ - basis w1, ...,ws of 0,/by in 0,. The order of n;, is ord([n;]) = p* with

s 0, v>m
v S1p+ 82, +1, v<m
o — |log, m < pp_el
v - € (&
[log,, ﬁj’ m> L3
pe
5 0, . m < P
v Lm—l(:l/ VJ, m>p€1'

Proof. We begin by computing the orders of the 7;, and show that we have a basis
representation afterwards.

If v > m, then ord([n;y]) = 1 holds. For v < m < 25 the generators of the
fundamental level v € F, are generators of the levels p*'v , where s; € Z>° with
PPl < m.

We now look for the maximal sy, fulfilling the last inequality. With p**v < m—1
we get s1, = |log, (™) ]. Hence p*'*v is the maximal level (1+by)/(1+b,™) for
which 7;, is a system of generators. With the p-th power rule and the choice of sy,

we get nfjlﬁl = 1 mod b,™. Hence the order of the class [,,] in (1+b,)/(1+b,™)
is psiv L,

For m > pe the n;, are the generators of the levels p®' v+ s,e where 51, s5 € Z>0
satisfy p®t 1/—1—526 < m and p*'v <37 . We are looking for the maximal level whose
71 . Then

p*1v v 4 sge < m — 1 holds and we get so, = | for the maximal s,, for
which the inequality holds. As above the order of [n;,] is increased by a power of p
and we obtain s, = sy, + s9, + 1.

We show by induction on m that we indeed have a basis representation. Let
wi,...,wys be fixed representatives Z/pZ-basis of 0,/b, in o, and n € 1 + b,. We
denote the class of 7 in (14 b,)/(1 + b,*) by [n].

We start with the case (p — 1) { e. The class of 7 in (14 b,)/(1 + b,?) has the
basis representation

generators are p-th powers of 7;,. AS above s1, is calculated for m =
7n—1—p31'/1/J
€

f
n= H H(1+wi7r”)ai” mod by,? (O < ajy <ord([l +wim]1) = { L v f 1 > .

v=1
vER, i=1 p,

Next we assume that the basis representation of [1]y, in (14 by)/(1+b,") is known
for k <m:

/
n= H H (1 4+ w;m) % mod bp* (0 < ay, < ord([1 + w;m”]g)).

vek, i=1

We construct b1, ...,bs. satisfying

n= H H(l + w;m)P mod b, (0 < by, < ord([1 4 win]ks1))-
veF i=1
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Let v/ € F, be the fundamental level for k. There exist s1,s3 with s = max{s €
Z | v'p® <min(k, 25)} and k = v'p** + sze. Then

’ n
’)’] =
HueFc ngl(l + wimy )i
is a principal unit of level k. Let wi,...,w} subject to wi = h3*(h'(w;)). There
exist c,...,cy with 0 < ¢; < p with
f
= H (14 wim)% mod b+t .
Hence, we obtain
f !
E H H +wz v a'“/ H(l +w,£7Tk)ci mOd bpk-‘rl .
€ i=1 i=1

The w; were chosen to satisfy (1 +wm” )P = (1 + wim®) mod b,**!, and we
conclude

P
H(1+w§ EH (1 4w )P mod b, "1,
i=1 i=1
iy 7é

With b;, := {

v#EV
iy + CpiSE, = we finally get the representation

f v /
nEIIHﬂ+wWWHmde1(M@w<{mmu+%ﬁh% ”#ﬂ>.

R im1 pord([l + w;m”]x), v=v

The generators of the level v/ are the generators of the new level k. It follows from
the p-th power rule that the order of (1 4 wﬂr”,) increases by the factor p and that
the orders of the other generators do not change.

In case (p—1) | e the proof is analogous, we just need to use a different isomor-
phism, hs : w — pw ([l

—1-

Proposition 3.4. In case I (see theorem 3’3) a basis of (1 +p)/(14+p)™ can be
computed in O(ef log Mpm) bit operations.

The multiplicative groups (1+b,)/(1+b,™) and (1+p)/(1+p™) are isomorphic
and since we chose m and wy,...,wy in ok, the generators of (1+b,)/(1+b,™) are
generators of (1+p)/(1+p™).

Hence a basis of the group 1+ p)/( + p™) can be computed easily if (p — 1)
. The proof of theorem

3.3 above yields an algorithm for solving the dlbcrete logarithm problem in (1 +
p)/(L+p™).
Algorithm 3.5 (Discrete logarithm, principal units, case I).
Input: n€1l+p, ok pCox, e f,p, meZ° abasis (n1,...,nf) of
(1+p)/(1+p™) and a system of representatives (w1, - ,wy) of
a Z/pZ-basis of oy /p in ok as in theorem 3.3.
Output: a € Z% such that [a” (m1,...,1r)] = [1]-
o Set a « 0 € Z7¢.
o For all levels 1 < v < m do:
o Find base level v/ of v.
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Compute the number of substitutions s1, so, 3.
Set w} — h3*(h3?2(h* (w;))) fori=1,..., f.
Find ¢, ..., ¢y, such that (n —1)/7" = sz:l ciw} mod p.

Replace aq, « aq,r + psr52tsse . JOfyr < Qfy +p51+52+53cf.
s1ts2+s3,.

Replace n « 1/ [T1_, L, =

o Return a.

O O O O

[¢]

For each computation of the discrete logarithm with algorithm 3.5 the val-
ues h3?(hs?(hi*(w;))) and nf,jlﬂﬁss have to be computed. This can be done in
O(f(meflogpMym) and O(mM,=) bit operations respectively.

Assuming the data above is known algorithm 3.5 returns the discrete logarithm
ofne(1+p)/(1+p)™ in O(m(Dg: + T, (f) + flogp - Mym)) bit operations.

If (p — 1) divides e and hy is not an isomorphism the generators of the level
1:1 are not a complete system of generators for the level pp_ 7- In order to obtain
the generators of the level e/(p — 1) the substitution h; is applied p#°~! times to
the generators of the fundamental step eq where p*c~1(p — 1)eg = e and p does
not divide eg. Since the order of the kernel of hs is p in this case, we can find a
Z/pZ - basis wy, ... ,ws with W — aufuo*l = 0 mod p, so that w? " generates the
kernel of hs. To complete the system of generators for the level z%’ we introduce
an additional generator w, of oy /p which is not contained in the image of hy. If

2P — ex = w, mod p has no solution, then w, is not contained in the image of hq.

Theorem 3.6 (Unique Representation, case II). Let (p — 1) | e and hy not be an
isomorphism. Choose eq and o such that e = p*°~1(p—1)eg and p does not divide

-1
eo. Let wi,...,ws be a Z/pZ - basis of ox/p in ox subject to wfuo — wa% =
0 mod p. Choose w, € o0y such that P — ex = w,mod p has no solution. Then the
class [n] € (14 p)/(1 4 p™) has the unique representation

f O S aleo < pHO
m =[] [Imwl > [ 0 < aw < ord(fmw]) for (i,v) # (1,e0)
vER, i=1 0 < a, < ord([n)

with n;, = 1+ w;m and n, = 1 + w,wP"°n" . The corresponding orders are

ord([niy]) = p* for (i,v) # (1,e0) and ord([n.]) = p*T1, respectively, where
Se = L%J and s, is as defined in theorem 3.3.

Proof. By the choice of wy and w, the representation is unique. The order of [n,]
is obtained as follows. ey and po were chosen subject to pp_el = pHoeg, therefore
Ny = 1 4 womP"°0 is a principal unit of level p#oey. The p-th powers of [n.] are
contained in the systems of generators of the levels p*°eg + se. The maximal non—

negative s satisfying pH°eg + se <m — 1 is s, = \_%J O

We remark that we do not necessarily get a basis representation, since the order
of 71¢, is in general not p#°. However, in many cases the unique representation is
a basis representation.

Corollary 3.7 (Basis Representation, case Ila). If (p — 1) | e and the kernel of ha
is not trivial and

i) p<3andm < 2e or
ii.) p>3and (p—1)m < (p+ 1)e,
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the unique representation in theorem 3.6 is a basis representation. In that case we
have ord([n1e,]) = pH.

-1
Proof. Let v = -4 = proteg and n = 77{:;

= (1 + w7 then n =
1 + am” mod p“*! holds. We determine the maximal exponent m for which the
congruence n” = 1 mod p™ holds. With the p-th power rule and the choice of w;
we get n? = 1 mod pP**!. Comparing the summands with larger powers of p, the
proof of the p-th power rule in [Has80, p. 229] shows that

m<min(2v+e,(p—1)v+e) .
(I

In the unique representation of 7., the exponent ai., was bounded by ai., <
pro. We can represent nf;[: by the other generators and get a relation [n‘fs::] =
[Licr H;;l[mj]aif [7:]% with a1, = 0. From this relation and the (known) orders
of the other generators a basis of the group (1 + p)/(1 + p)™ can be derived by
computing the Smith Normal Form of the relation matrix.

A unique representation of an element in (14 p)/(1+p)™ can be obtained easily
with a slightly modified version of algorithm 3.5. If the base level v/ of a level v is
ep and v > pe/(p — 1) then wi is set to h3%(w.) and the vector a representing a up
to level v has to be altered accordingly (note that a € Zf¢*! in this case).

To obtain a set of generators of (1 + p)/(1 + p™) in case II and case Ila the

elements w; and w, must be computed. Denote by @) the matrix representing the
Frobenius automorphism x + P in the finite field oy /p. Then wy is the p#o~1-th
root of a nontrivial element from the kernel of () — eI and w, can be chosen from
ok /p \ range(Q — 1),
Proposition 3.8. In case Ila (see corollary 3.7) a basis of (1 +p)/(1 4 p™) can
be computed in O(ef log pp_el Mpm + TFp(f)) bit operations. In case II (see theorem
3.6) a set of generators and a relation matriz can be computed in O(ef log p(m +
S5 )Mpm + m(Dym + Ts, (f))) bit operations.

Let ((m11,---,Mfe,m), M) be a representation of (1 + p)/(1 + p™) as given

by theorem 3.6. Let S = T, MTgr be the Smith normal form of M. Then
(TR(nu,...,nfem*)T)T is a basis of (1 + p)/(1 4+ p™) which can be computed
in O((efm logp + e2f2)|\/|’,f) bit operations.
Proposition 3.9. In case II a basis of the group (1+p)/(1+p™) can be obtained in
O(ef(mlogp+ S5y logp+ef)Mpm +m(Dym + T, (f)) + S(ef)) bit operations. The
discrete logarithm of an element can be computed in O(m(Dgr + Tg, (f) + flogp-
Mym) + M(1, ef, ef)) bit operations.

4. QUADRATIC METHODS

The quadratic method by Cohen, Diaz y Diaz, and Olivier [CD096, CDO9S,
Coh00] is based on the following fact.

Lemma 4.1. Let k be an algebraic number field with mazimal order oy and let
p C ok be a prime ideal. If | < m < 2l then

U (1+p)/A+p™) = (/™) L +ad—a

is an isomorphism.
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A basis of the additive group p’/p™ can be computed easily. Let w be an integral
basis of oy, let p! and p™ where 1 < I < m be given by the matrices A and B, so that
w; = Aw (respectively w,, = Bw) is a Z-basis of p' (respectively p™). The matrix
BA~! represents the elements of p™ by the elements of p', as w,, = BA™'Aw =
BAw; Thus BA™! is the matrix of relations of the additive group p!/p™ and the
components of w; are its generators. Hence p'/p™ is represented by (w;, BA™!). If

w; = (wyy, -+ ,w,)T we get the representation
14+ wp
(9, M) := ,BA~!
1+ wp,

for (1+p')/(1+ p™) by generators and relations.

In order to obtain a representation of [b] € (1 + p')/(1 + p™) by g we need to
find a = (a1, ,a,) with [b—1] = 301, a;wy], then [b] = [T, (1 + w;i)*] holds
by lemma 4.1. Let b € Z™ with b — 1 = bw, then bw = aAw. A solution a € Z" of
the equation b = aA gives the desired representation.

Let k,I,m with k <[ < m and | < m < 2[ be given. Denote the class 1+ a
modulo (1 + p?) by [1+ al;.

By the isomorphism theorem the sequence

1 o— (L+ph)/(L+p™) 5 @+pR)/A+p™) B @+ph)/A+ph) — 1
1+ a]m — 1+ a)m — 1+ a];.

is exact.

By the definition of the map ® we have ®([h],,) = [h];. We are looking for a
matrix P with N[h],, = P¥([g]m). We compute the matrix P by applying the
method for computing the representation of elements in (1+p')/(1+p™) to N[h],.

We obtain the representation
h N -—-P
g)’\0 M '

for (1+p*)/(14p™). In order to compute (1+p)/(14p™) one computes iteratively

(L+p)/(L+p2), (L+p)/(L+pY),., (L+p)/(L+p2), (L +p)/D+p™),

where s = |log,(m)].

Algorithm 4.2 (Generators and relations, quadratic method).
Input: ok, p C ox,m € Z>°, integral basis w of oy
Output: Generators and relations of (g, M) of (1+p)/(1+p™)

o Compute generators and relations (h, N) of (1 +p)/(1 + p?):
o Compute matrix representations A, B € Z"*™ of p, p>.
o Set g — (g1,...,9n) With g; =14 Aw; for 1 < i <n.
o Set M «— BA™L.
o Set k«— 2, s 2.
o While [ # m:
o Set | < min(2°%,m).
o Compute generators and relations (h, N) of (1 + p*)/(1 + p'):
o Compute matrix representations A, B € Z"*™ of p*. p'.
o Set b« (h1,...,hy) with h; =14 Aw; for 1 <i < n.
o Set N « BA™L
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o Compute P, such that Nh = Pg using algorithm 4.3 below.
o Replace g — ( Z ), M — (](\)’ _1\/1[3)

oSetk«—I,s—s+1.
o Return (g, M).

A representation of the class of n € ok in (1 + p)/(1 + p™) by generators as
computed with algorithm 4.2 can be obtained with the following algorithm.

Algorithm 4.3 (Discrete logarithm in (1 +p)/(1 + p™), quadratic method).
Input: A maximal order oy, a integral basis w = (w1, ...,w,) of 0k, a
prime ideal p Cox, me N, nel+p
Output:  a such that [ag] = [n], where g is a set of generators of (1+p)/(1+
p™) as given by algorithm 4.2
o Setk— 1, a« ().
o While k& # m:
o Set | « min(2k, m).
o Discrete logarithm in in (1 4 p*)/(1 + p):
o Find b € Z™, such that n — 1 = bw.
o Let A € Z"*™ be a matrix representation of p*. Set ¢ « bA™1.
o Set n « n- (I, (1 + Aw;)*)~!
o Replace a «— (a ¢), k — 1.
o Return a.

Matrix representations of p, p? to p™ and the inverses of these matrices can be

computed in O(logm(nMym + Tz(n))) bit operations. Algorithm 4.3 computes a
representation of an element of (1+p)/(1 + p™) in O(nmlogpMym + logmDym)
bit operations. Algorithm 4.2 returns generators and relations of (1 + p)/(1 +
p™) in O(anlogpMpm + nlogmDym + log mTZ(n)) bit operations including the
computation of the data above.
Proposition 4.4. A basis of the group (1 4+ p)/(1 + p™) can be obtained with
the number of bit operations being O(nmlogp(n + logm)Mym + nlogmDpm +
logmTz(n)) 4+ S(nlogm,nlogm)) and the discrete logarithm can be computed in
O(nmlogpl\/lpm + log mDym + M(1, nlogm, nlog m))

5. p-ADIC LOGARITHMS

In this section we present a third approach to the computation of the discrete
logarithm in (1+p)/(14p™). These methods can also be used for the computation
of generators and relations of (1 +p)/(1 + p™) [Coh00, chapter 4].

For levels greater than e/(p — 1) the p-adic logarithm can be used for the com-
putation of the discrete logarithm. Define

i . ;[;i 0 .’177;
log, (1 + ) := Z(_l)z 17 and exp, () = Z R
i=1 im0 U

Proposition 5.1. Let p be a prime ideal over the prime number p with ramification
index e = vy(p).
i.) The expansion for log,(1+x) converges p-adically if and only if vy(x) > 1.
ii.) Let x,y € k with vy(z) > 1 and vy(y) > 1 then log, ((1+ z)(1+y)) =
log, (1 + ) log, (1 +y).
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iii.) Let x € k with vy(z) > e/(p—1) then log, (exp,(z)) = = and exp,, (log, (1+
z)) =1+uz.

iv.) For any integers I and m with m > 1 > 1+ |e/(p — 1)] the functions
log, and exp, are inverse isomorphisms between the multiplicative group
(14 pY) /(14 p™) and the additive group p'/p™.

Remark 5.2. Assume v,(z) > e/(p—1) and ¢ = p°. Then

vp (' /i) = vy (¥ [p®) = p*vy(x) —es > pe/(p—1) —es > e(p* " —s).

The inequality e(p*~! — s) > m holds if i = p* > pm > pm/e. Thus log, can be
approximated by computing the first m summands of the series for p {7 and the
summands up to ¢ = pm for p | i.

The p-adic logarithm modulo p™ can be computed in O(mMpm ) bit operations.

Artin-Hasse logarithms yield an inductive method for the computation of the
group (14 p)/(1+ p™) of the discrete logarithm similar to the quadratic methods
in the previous section. The quadratic methods exploited the isomorphisms (1 +
) /(1 + p?*) = pk/p?*; the Artin-Hasse logarithm gives the isomorphisms (1 +
p*) /(1 + pP*) = pk /pP*. Hence less iterations are necessary using the Artin-Hasse
logarithm. Define

p—1 i p—1 4
L(1+2x):= Z(—l)i_ﬂ% and E(z):= Z f—l
i=1 =0

Proposition 5.3. Let p be a prime ideal over the prime number p.

i.) The nonzero monomials of the polynomial
L(1+2)(1+y) L1 +2) - L(1+y)

are of the form xFyt with k +1> p.
ii.) If vp(z) = k then E(L(1 + z)) = 1 + 2 mod pPk.
iii.) If k <1 < pk then the map

(L+9")/(L+p") —p"/p', (L+2) — L1 +2)

s a group isomorphism.

6. COMPUTING THE GROUP OF PRINCIPAL UNITS AND THE DISCRETE
LOGARITHM

A major advantage of the basis (respectively unique) representation of the prin-
cipal units as given in section 3 is that the structure of the group is given directly.
In section 8 we will see how the fact that we know which basis elements are gener-
ators for which level can be exploited in the computation of conductors of ray class
groups and more general ideal class groups. Very few computations are needed for
the computation of a basis of the multiplicative group of the residue class ring.

We combine the methods from sections 3, 4, and 5 to a more efficient algorithm.
We use the generators given by theorems 3.3 and 3.6, the quadratic methods for
the discrete logarithm for levels up to ppfelg for levels greater than pp_el we use the
p-adic logarithm for the computation of the discrete logarithm.

The following algorithm is formulated for case I only. A version for case II

requires only minor changes.
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Algorithm 6.1 (Discrete Logarithm, combined).
Input: 7 € 1+p, 0k, p C ok, e, f, p, m € Z% a basis (m1,...,np) of
(1+9p)/(1+p™) as in theorem 3.3.
Output: a € Z¢ such that [a” (m11,...,1re)] = [1]-

o Setk«—1,a=(ai,...,af) 0.
o While k < min{m, [pp_eﬂ}:
o Set | + mim{Qk,m7 [ppfl]}.
o Compute a basis p1; = nf; e Pf1 = 7]?: e PP = n?ii of
(1+p")/(1+p").
o Find (ci1,...,¢fr) € Nwith ci1(p11 — 1)+ +cpr(ppr — 1) =n— 1.
o Replace n « /[T, _, TIi, £5"-
o Replace a1y, < a1, +0°'C11,...,af, < afe, +p°reps.
o Replace k < I.
o If k < m then: . .
o Compute a basis p11 = log, e = log, 77?11,...7pfe =
log,, 77?: of pk /p™.
o Set y < log, n. Find (c11,...,¢cre) € N. with cripii+---+cpepre = -
o Replace a «— (an + %1,y Qe +p5'-‘cfe)
o Return a.

The number of basis elements for (1+p*)/(14p') which are p-th powers of gener-
ators of lower levels is at most f % —ef. Thus the p;, for levels less than 1% can
— (pp_el —¢)Mpm ) bit operations. The p;,, for levels greater

than ppfel can be computed in O(ef log pMym + ml\/lpm) bit operations. In addition

it is convenient to have matrix representations of the ideal p?, ppz, . ,p% ,p™ in
order to reduce the representations in p¥/p!. The matrix representations of these
ideals can be computed in O(log m(nMym + Tz(n))) bit operations. Computing
the Hermite Normal form of the matrices (p11 ... pfe) in advance will speed up
the computation of the discrete logarithm, this can be done in O(log ppfelTZ(n)).

be computed in O(log

Proposition 6.2. In case I and case Ila (case II) a basis (unique) representation
of an element in (1 +p)/(1 4+ p™) can be computed in

O((m + log 25 ef log p)Mpm )

p

bit operations. Assume m > ppTl.

p)/(1+p™) can be computed in

Then in case I and case Ila a basis of (1 +

O((nlogm +m + ef log p)Mym + logmT(n))

bit operations. In case II a basis of (1 + p)/(1 + p™) can be computed with the
number of bit operations being

O((n logm +m + ef logplog p”fl)Mpm +logmT(n) + S(ef)).

The quadratic method from section 4 is implemented in the computer alge-
bra system PARI/GP [BB199]. In the computer algebra systems KASH/KANT
[Pot00, DFT96] and MAGMA [BC95] a combination of the methods from sections
3 and 4 is used.
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7. COMPUTING RAY CLASS GROUPS

Let mg be an integral ideal and m, a formal product of real infinite places of k.
Then m := mome, is called a congruence module. Let a®) € C be the ith conjugate
of a € k. Multiplicative congruences with respect to a finite place contained in the
congruence module are defined by

a=1mod* p™ & vy(a—1) >m
and for a real infinite place p((f;) by
a=1mod* (p)™ = a® > 0.
Let I™ := {a € Iy | gcd(a,mg) = 1} and Hy, := {(a) € Hx | @ = 1 mod* m}. Then
the ray class group modulo m is defined as Cl; := I'""/H,,.

Let H™ := {a € Hy | ged(a,mg) = 1}}, kyw := {a € k | ¢ = 1 mod* m},
k™ := {a € k | ged((a),my) = 1}, Uy the group of units of o and Uy, := {u €
Uk | v = 1 mod* m}. We will compute the ray class group Cl in the way the
following diagram from [Lan94] suggests.

™ - I
| |
k™ — H™ — Hg
| |
Ux — Uik, — Hy

| |
U, — |

We note that corresponding vertical lines represent isomorphisms of factor groups.
Horizontal arrows denote natural embeddings.
Algorithm 7.1 (Ray Class Group).
Input: 0k, Uy, Cli, m = mgmyo
Output: CI
Compute k™ /ky, 22 (0 /mp)* X lemmR*/RDO.
Compute Uy /Uy, via the image of Uy in k™ /ky,.
Factor (k™ /ky) by (Ux/Up).
Compute generators of Clyx which are prime to my.
Compute a basis of CI.

e}

O O O O

We already described the computation of (0x/mg)*. For the computation of
k™ /ky, we also need generators of k™ /kn, = Hp‘me*/R*w. Assume my, =

pg?) . -pg..lﬁ"'). We are looking for generators ¥; of the group k™= /ky,__ satisfying

¥; = 1 mod* my. The approximation theorem assures the existence of ¥, ..., 3
subject to

¥; = -1 mod* pg)j) ,

9, = 1 mod p¥), i=1,...s i#j,

v, = 1 mod* mg .
Let ay,...,a, be a basis of mg, and let x € Z™ be a solution of the system of
inequalities

1+ 210l + -+ 20l <0
T+ zal + el > 0, i=1,....s, i#] .
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Then ¥; = x(a1, ..., a,)T fulfils the congruences listed above. To obtain x we solve
a system of linear equations
1+ zal"" + -+ Zpal?)

L+ zal + 4 30l = a4, =18 0 # )

—a

for a := % >oi |a;]. From the real solution X of that system we then obtain x by
rounding all coordinates to their closest integer: z; = |Z;] (1 < i < s).

We compute the group U/Uy, via the image of U in k™ /k,. For this we calculate
the images of a system of generators of U in k™ /ky,. Then the factor group of the
finite groups k™ /ky, and U/U,, is calculated by computing a normal form for the
matrix of relations for the generators as outlined in [CDO96].

Algorithms for the computation of class groups of algebraic number fields are
presented in [Coh93], [Hes96], and [PZ89]. Generators of the class group which are
prime to my are easily calculated by algorithm 7 in [Coh96]. It remains to compute
the factor group of I™/H™ and H™/H,, to get CI = I™/H,,.

8. COMPUTING CONDUCTORS, DISCRIMINANTS AND SIGNATURES

Let m be a congruence module and Cl = I™/H,, be the ray class group modulo
m. Let J, be an ideal group which can be defined with m, i.e. which satisfies
I">Jn D Hn

The conductor f of an ideal group is the smallest congruence module f with which
that ideal group can be defined.

In the sequel we explain how to calculate conductors of ray class groups. It is
clear from the diagram of the previous section that we do not need to compute the
entire ray class group. It clearly suffices to compute H" /H,, = (k™ /k,,,)/(U/Uy,).
An ideal group, which can be defined with m; and with ms, can also be defined
with ged(my, ma). Hence, if for each p | m the integer j, is the largest exponent
such that n, = m/p?» is integral and that H" /H, = H™/H,, then f is is the
greatest common divisor of all these n,. We determine j, as the largest integer ¢
for which the groups H™ /H,, and Hm/pl/Hm/pi still coincide.

It can be easily deduced from theorems 3.3 and 3.6 that for any prime ideal p
and any k > 0 the same representatives for the classes of generators can be used
for k"k/kpk and kpk_l/kpk—l. With respect to basis representations of (o /p*)* we
only need to change the orders of the generators to get a basis for (o /p¥~1)*. In
the case of a unique representation, also the relation for 77{’;;) must be replaced by

the order of 7., in the step from level k = ppfl tolevel k —1 = % —1.

Since the same representatives for the classes of generators of KP* /kpr and

k! /kpr-1 can be chosen, the representation of the image of the generators of U
by the generators of k" /kyr is a representation by the generators of Kk [Kpk—1
as well. So the relation matrix of (kpk_l/kpk—l)/(U/Upk—l) can be derived from
the relation matrix of (kpk/kpk)/(U/Upk) by a simple change of the orders of the
generators and, in the case of a unique representation, also by replacing the relation
for m1¢, as described above.

The same can be done for (k"/ky)/(U/Uy,) and (k™?/k,/,)/(U/U, /) since
they are direct products of groups (o /p*)* and the corresponding groups for the
infinite places. A comparison can easily be carried out via the Hermite normal forms
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of the corresponding relation matrices. It is even faster to consider the diagonal
elements of the Hermite normal form of the first relation matrix and to determine
whether the changed orders for the second matrix change the Hermite normal form.
The infinite places are treated similarly.

Let Jy, be an ideal group defined with m. For n | m let ® denote the surjection
from Cl to Cl. For the computation of the conductor of I™/J, we use that
CIy/(Jw/Hy) & I™/J,,. For Cl;/®(J/Hy) = ClY/(Jw/Hy) the ideal class
group I™/J,, can also be defined with n. We proceed as in the case of ray class
groups; we compare the groups Clj,/®(Jn/Hy,) and CL /(J/Hy) via their rela-
tion matrices, which in addition to the relations for H™ /H,, contain the relations
for the generators of Clk and the relation for the factorisation by Ju/Huy.

Let K/k be the ray class field corresponding to the module m. In [CDO9S,
Theorem 3.3] Cohen, Oliver and Diaz y Diaz develop a formula for the relative
discriminant 0k /. For n | m set hy g, := #(Clg/®(Jn/Hp)). Then the relative
discriminant is

oxci = [T #esn Ercecm horoton
plmo
The ray class numbers hy, k3, can be easily computed with the same methods
which we used for the conductor. Finally, let (r1,72) be the signature of k and
(R1, R) the signature of K. Specialising the formula for signatures of ray class
fields from [CDOY8, Theorem 3.3] we get Ri = r1hy 3,

9. THE GLOBAL FUNCTION FIELD CASE

In this section we discuss the respective theory and algorithms in the global
function field case.

9.1. Ray divisor class groups. Let k/IF, denote a global function field over the
finite field of g elements and characteristic p. Unlike the number field case, for
global function fields there is no canonical maximal order. It is hence more natural
to work with divisors instead of ideals. Let D denote the group of divisors and P
the subgroup of principal divisors (a), a € k*. The divisor class group Cl is defined
as D/P.
Let m € D be an effective divisor, which we again call congruence module. For
a € k we say that a = 1 mod* m, if v,(a—1) > v, (m) for all places p|m. We further
define the subgroups D™ := {a € D| ged(a,m) =0}, P*":=PND™ k™ :={a €
k*|(a) eP"} kpy :={a€k™|a=1mod* m} and Py, :={(a) € P"|a € k, }.
The ray divisor class group Cl,, for the congruence module m is defined as D™ /P,.
Let H be a subgroup of D™ and Uy := {a € k™| (a) € H }. We then obtain the
following diagram, similar to the number field case:
D™ — D
| |
k™ — p® - H+P™ — H+4+P
(1) | | |
Uy — Ugky — HNP“"+P, — H+P,
| |

Uy Nkm — k.

Again corresponding vertical lines represent isomorphisms of factor groups and
horizontal arrows denote natural embeddings. For H = {0} we have Uy = F,.
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Using this in the diagram (1) we get the canonical exact sequence of abelian groups
(2) 0 — F;, — k"/ky, — Cl, — D"/P™ — 0.

In view of [CDO98, Proposition 1.2] this means that in order to compute Cl,, we
need to compute generators and relations for D™ /P™ and k™ /F; ky,. To link these
we also need to compute the actual elements of k™ / Fy kw corresponding to relations
of D™ /Py, and to express these in the generators of k™ /F, k.

The computation of generators and relations for C1 = D/P is described in
[Hes99]. From these generators and relations corresponding to divisors and principal
divisors in D™ and P™ respectively can for example be obtained by applying the
approximation theorem analogously to the number field case. The actual element
in k™ (mod Fy ky) corresponding to a relation, i.e. the generator of a principal
divisor in P™, can efficiently be computed. Furthermore, it is also possible to find
the expression of a divisor class (given by a divisor) in the generators of Cl. For
details we refer to [Hes99].

Once generators and relations for Cl,, are computed as above the task of ex-
pressing a given element of Cl, represented by a divisor a € D™ can be solved as
follows: We first express a in the representatives of the generators of D™ /P™ up to
a principal divisor (b) in P™ for b € k™. Then b is expressed in the representatives
of the generators of k™ /Iy ky, up to an element of Fy ky.

9.2. Multiplicative groups of residue class rings. We are left to describe how
generators and relations for k™ /F; ky are computed and how an element of k™
(mod F} ki) can be expressed in these generators.

We first consider k™ /ky,. Let o, denote the valuation ring of p such that p is
the maximal ideal of o,. It is straightforward to see that the canonical map of
multiplicative groups k™ — lem(op/pvp(m))* has kernel k,,. Using the weak
approximation theorem we also see that it is surjective so that we obtain k™ /ky,,
Hp‘m(op/pvp(m))*, in analogy to the number field case. Once we have generators

and relations for each of the (0,/p?» (™) their disjoint union will give generators
and relations for k™ /ky,. We remark that we do not have to compute actual
elements of k™. We obtain generators and relations for k™ /IE‘; k., by expressing a
generator of F' in the generators of k™ /km and by adding the obtained expression
to the relations of k™ /ky,. Finally, to find the expression of an element of k™
(mod F; ki) in the generators we do so for every local factor (op/pvp(m))*.

We next need to explain how generators and relations for (op / pm)* for m € Z=1
can be determined and how an element in o, (mod p™) can be expressed in these
generators. In analogy to the number field case we have (0,/p™)" 2 (0, /p)* x (1+
p)/(1+p™) where (0,/p)* is mapped to the group of (g4°8(*) — 1)th roots of unity
in (o, /pm)*.

It is well known that the order of (1 +p)/(1+ p™) is (¢4°8®))m~1 For a € R=°
and setting min{ } := 0 define [a], := min{p'|a < p', | € Z=°}. The following
lemma immediately gives us generators and relations for (1 +p)/(1 + p™).

Lemma 9.1. Let € p\p? and B be a system of representatives in op of the IFp-
vector space 0, /p. Let Ug ; denote the subgroup of (1 +p)/(1+ p™) generated by

(14 Bn7) U}Em) forBe€ B andj>1,j coprime top. The groups Ug ; have pairwise
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trivial intersection and are of order |Ug ;| = [m/j],. Moreover,
(1+p)/(1+p™) = [[{Uss18€ B, 1<j<m—1, ged(jp) =1},
Proof. Follows from [Aue99, p. 39]. O

Assume for given a € (1+p)/(1 + p™) we want to find the expression of a as
a power product of the generators of the Lemma. The most elementary way of
achieving this is by a Gaussian elimination procedure as done in Algorithm 3.5.
The methods of section 4 can also be used. The p-adic logarithm in section 5 does
not carry over, because we work in characteristic p and would have to divide by p
in the series expansion of log, and exp,. However, the Artin-Hasse logarithm can
be applied, Proposition 5.3 remains true in characteristic p. This appears to be a
very efficient way for computing the expression of a in the generators.

9.3. Conductors. Let H be a subgroup of Cl,,. If m’" < m is another congruence
module we have a natural epimorphism @, : Cl,, — Cl,,. There is a unique
smallest congruence module f < m such that Cl;/®;(H) = Cly,/H. This congru-
ence module is called the conductor of H. The conductor of Cl,, is defined to be
the conductor of its zero subgroup H = {0}.

Using the definition there is a straightforward way of computing the conductor
of a subgroup H of Cl,,. Namely, we successively check for all smaller congruence
modules m’ < m whether the isomorphy holds. If not, we take the next m’. If yes,
we replace m by m’ and H by ®(H) and start from the beginning. At the end, m
is smallest possible. Because of the uniqueness property m must be the conductor
of the original H.

A more explicit way is given by the diagram (1) above. Assume the subgroup
of Cl,, is the image of a divisor group H C D™. The conductor is a smallest
congruence module m’ such that Uy Ky /km' = Ug Ky /K. In the case of H = {0}
we see from the exact sequence (2) above and since the cardinality of (o,/p™)*
changes if m changes that m already is the conductor of Cl,,. The computation of
the conductor for general H using the isomorphy amounts to two major steps:

In the first step we need to determine generators of Ugy. If hy,...,h, are the
divisor classes in Cl of the generators of H we compute the kernel of Z" — Cl,
(Ai)i = >; Aihs. To carry out this computation we need to know generators and
relations of Cl and need to express the classes h; in these generators. From the
kernel we obtain a basis of H NP™ and can reconstruct the corresponding elements
in UH-

In the second step we express the generators of Uy in the generators of
k™ /ky,. Joining these expressions and the relations of k™ /k,, yields the relations
of k™ /Uy ky,. Now, analogously to the number field case, for smaller m’ there is
no need to recompute the expressions for the generators of Uy. We only have to
adjust the orders of the generators of k™ /ky, in the relation matrix for k™ U k.
Once we obtain a different relation module, m’ is too small. Successive testing and
descending again exhibits the smallest congruence module preserving the isomor-

phy.

9.4. Class field discriminants and genera. Let m be a congruence module.
From class field theory we know that the abelian extensions K/k of conductor less
than or equal to m correspond inclusion reversing to subgroups H of Cl,, of finite
index. The conductor of K/k is equal to the conductor of H.
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Let hm/ g := Cly/ /®w (H) for the natural epimorphism @, : Cly, — Clyy
and let 0k /x denote the discriminant of K/k. Using the same proof as in [CDO98]

we obtain
vp (m

)
OK/k = (hm,H)m_Z Z haw—kp, i | P
k=1

plm

Let deg(H) := min{deg(a)|a+ Py € H}. Because H is of finite index in Cly,
deg(H) > 1 holds. Let I, be the full constant field of K. From class field theory
we have [K : k| = hy g and [Fy, : F,] = deg(H). Furthermore, the norm of the
different of K/k down to k equals 0k x, and [F,, : F,]-times the degree of the
different equals the degree of the discriminant. If gx and gk denote the genus of k
and K respectively we obtain from the Hurwitz genus formula

vp (M)
deg(m) 1 ‘
dea(H) (g = 1) = hr (1= 1+ 5 ) - s | X ot | o
plm \ k=

Using the methods from section 9.3 we can compute the numbers hy_gp g easily.
We are thus able to determine the discriminant 9k /i and the genus gk.
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