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RESUME. En cet article nous donnons des unités fondamentales
pour une famille des corps de nombres engendrés par un polynome
paramétré de degré 5 avec signature (1,2) et groupe de Galois Ds.

ABSTRACT. In this article we compute fundamental units for a
family of number fields generated by a parametric polynomial of
degree 5 with signature (1,2) and Galois group Djs.

1. Introduction

Let K be a number field generated by a zero p of a monic irreducible
polynomial f € Z[z]. Let nx be the degree of K and rx the unit rank of K.
The computation of the unit group of an order of K can be done by several
methods like the Voronoi algorithm (for rg < 2), successive minima and
other geometric methods using parallelotopes and ellipsoids. If f defines a
parametric family of polynomials it is a problem to give the fundamental
units of K in a parametric form, in particular for increasing degree nx and
rank rg. For degrees nx < 3 there are parametric systems of fundamental
units known for several families of number fields of different unit rank (see
for example [2] for unit rank 1 and degree nx = 2 and ng = 3, and [19],
(23], [8] for rg = 2 with nx = 3).

In the case ng = 4 Stender ([21], [22]) has obtained families with unit
rank 2. Some families with unit rank 3 are described in the biquadratic
case ([20], [3], [6], [25]) and in the non-biquadratic case ([13]). For ng =5
only a few families of number fields with explicit systems of fundamental
units are known (see [12] for 2 families of degree 5 and rank 2 and 3, and see
[17]). The parametric unit computation has been extended up to number
fields of degree 8 with cyclic Galois group by Shen ([18]) or with Galois
group isomorphic to Cy x Cy x Cy by Wang (]24]).

In [9] we have constructed parametric polynomials f,(z) of degree n
with Galois group either the dihedral group D, of order 2n, or the cyclic
group C), of order n using elliptic curves with rational points of order n.
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For n = 4 we computed in [10] parametric units which form a system
of fundamental units under some conditions. The constructed polynomial
f5(2) is isomorphic to the one of Brumer (for details see [9]). Kihel showed
in [7] that any set of four roots of this polynomial forms (under certain
conditions) a fundamental system of units of the splitting field.

In this article we compute parametric units in the case ng = 5. We use a
geometric observation and a Theorem of Obreschkoff. The computed units
are fundamental for signature (1,2) under some conditions. This is proven
by approximations of the complex roots of the generating polynomials.

2. The Polynomial P,(z)

For n € Z we consider the polynomials
Poys(x) = 2°—na* +b(2n+b*—b—1) 23— b? (n4+b—3) 2® +b% (b—3) x+b".

introduced in [9] and [16]. We only consider the case b = £1. Since
P, _15(x) = Puys15(x + 1), we consider only the case b = 1, and set
Po(z) = Pyais(z) = 2° —nat + (2n —1)2® — (n — 2) 22 — 22 + 1. These
polynomials have discriminant 16(4n3 — 28n2 + 24n — 47)2, and are irre-
ducible for every choice of n € Z which is shown by a short computation
modulo 2.

Lemma 2.1. The polynomials P, (x) (with b = 1) have signature (1,2) for
n < 6 and signature (5,0) forn > 7.

Proof. The discriminant is positive for every n € Z which implies that
P, (z) have exactly one or five real roots. We have P,(—1) = -4n+5<0
for n > 2 and P,(0) = P,(1) = 1 > 0. Moreover P,(3) = =22H3 < 0 for
n > 7, hence there are at least three real roots for n > 7.

In the case n < 7 we compute the signature (2,1) with the help of a
theorem of Sturm (in algorithmic version for example in H. Cohen [1],
4.1.10+4.1.11): Let lp be the leading coefficient of Ay = P, (thus lp =
1), I; the leading coefficient of the derivation A; = P, (thus I; = 5).
For a polynomial divison of A;_s(z) by A;—1(z) in the form A; o(z) =
Ai—1(2)Qi(x) — Ai(x), let 1;(n) be the leading coefficient of the rests A4;(x)
for 2 < ¢ < 5. Then a computation yields (apart from positive constant
factors and quadratic denominators)

lo(n) =2n?> —10n+5, I3(n) =n*—4n® —14n% +6n — 22,
ly(n) = (2n? +6n +3) (4n® — 2802 +24n — 47) (2n? — 100 + 5)?

and
Is(n) = (n* —4n® — 1402 + 60 — 22)°.
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Let w(n) be the number of sign changes in the following sequence which
depends on n —ly, 1, —l2(n),l3(n), —l4(n),l5(n). And let v(n) be the num-
ber of sign changes in ly, l1,l2(n),l3(n),l4(n),l5(n). Then gives w(n)—v(n)
the number of real roots of P, (x). For every n < 7 we get w(n) = 3 and
v(n) = 2 (even if the specific sequences differ). O

3. The Galois group of P,(x)

The Galois group of P,(z) over Q(n,b) is the dihedral group with 10
elements as shown in [9], Théoreme 2.

Lemma 3.1. For b = 1 the polynomials P,(x) have only for n € {7,18}
the Galois group Cs; both polynomials generate the same number field.

Proof. Geiiler gives in [4] a condition for polynomials to have cyclic Galois
group: the expression Z?:l :c,xf '+, have to be rational for the roots z; of
P,(x). This is equivalent to the existence of rational points on certain
elliptic curves (quotient curves) as shown in [9]. For P,(x) this quotient
elliptic curve is

22 = 4n34(b*—30b+1) n®—2b (3b+1) (4b—T7) n—b (4b* —4b> — 400> +-91b—4)

and with b = 1 we have 22 = 4n> — 28n? 4 24n — 47. With the computer
algebra system MAGMA [11] we compute the Mordell-Weil group over Q to
Z/5Z where all finite points have n-coordinate 7 or 18. Therefore only the
polynomials

Pr(z)=a2% — 72 +132% —52% — 22 +1,
and
Pig(z) =2° — 182 + 3523 — 1622 — 22 + 1
have the Galois group C5. With the computer algebra system KANT [5] it is

easy to show that for a root p of Pr(x) the algebraic number 2p%—9p%+2p+1
is a root of Pig(z). O

4. Parametric units

By Lemma 2.1 for n < 6 the number fields K generated by P,(x) have
two fundamental units. Since P, (z) = z(z—1)(23—(n—1) 22 +nz+2)+1,p
and p — 1 are units in K.

Theorem 4.1. The elements p, p—1 build a system of independent units in
the equation order Z[p]. Moreover they are fundamental in Z[p] for n < 6.

Remark. In the case n = 6 the units p and p — 1 are independent which
is proved by KANT [5]. They don’t generate the full unit group of Z[p].
The set {2p* — 11p3 + 16p? + 2p — 4, p* — 5p> 4 6p? + 3p — 2} is a system
of fundamental units. The equation order is maximal in this case.

In the cases n > 7 we were not able to find more parametric units.
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The proof of this theorem needs an approximation of the absolute values
of the considered elements p and p — 1 and of their conjugates. Since p is
a root of P,(x) its conjugates are the other roots.

Lemma 4.2. Let n > 7. Let p™M, p@, p®) o) and p® be the real roots of
P, (). Then we have the following approzimations:

_1<_L_l ()<_i<0<i<( L l §

vnoon =7 Vn Vn P f n S5

3 1 1 1 1 1 1 5
—<<1———-<p@)<],-——+ <T< b — <pW<14+—=+=-<3

and
3<n—3<p® <n-2

Proof. This is easy to see because of the sign changes of P,(z). Forn > 7
we have the inequalities:

Pn(_ﬁ - )= 72n47074”4*5n3’“’73n372”§g°75n2710n1,o,10n75 V-l
}H_%ﬁzd%%i>a
R&ﬁ):ﬁ%%ﬁ>a
Pn(Ln + %) — _2n475+4N4+5n375_5n3_6”;5’5+3n2+10n1»5+10n+5 i .
Pyl = ) = St anii il < g,
4 . ) )
Pn(l B % +% 5nt-17n®°433n%—44n 5:;;13n —30n'5415n—5/n+1 > 0,
4 ) .
Pn(l + ﬁ + %) 5ni417n35433n34+44n2 51_;13” BOR15tS Vie Y
Po(l+ o+ 3) =
—8nt°—-27nt 71 n?°—35n?+276 n* 5+1275 n2+2750n!1°+4375 n+3125 /n+3125)

<0,
Pu(n —3) = —n* +167n% — 91 n? —|—220n—191<0,
Pu(n—2)=2n3—-12n%+22n — 11 > 0.

O

For n < 6 we have to find approximations of the absolute values of the
complex roots. For this we use the following theorem of Obreschkoff [14]:

Lemma 4.3 ([14], page 9). Let f(x) be a polynomial of degree m and «
an arbitrary complex number with f(a) # 0 and f'(«) # 0. Then there is

inside and outside of every circle C' through a and o — T;,f(g) at least one

root of f(x) =0, if not all roots are lying exactly on C.
With this Lemma we show the following result.
Lemma 4.4. Let p!) be the real root and let p(?) = W, pb = W be the

pairs of complex roots of P,(x) (with b = 1). Then we have the following
approxrimations:
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2 1
(i) —n—|—2+5<|p(1)|<—n—|—2—|—ﬁ for n<—4

2 1
(1) —n+3+ﬁ<|p(1)—1]<—n+3+— for n<—4
n

1 2
2)
< < —= < —4
(iii) W 1P+ — for n
(iv) 1—i<|p<2>—1y< -5 for n < —144
dn n
(v) L+ = <[pV]<y/1- = for n<-—174
n n
5 14
(vi) R [y — for n < —139
n 13n

Proof. The following considerations are for n < —4. Since n is negative
it will be easier to substitute n by —n. Thus we study the polynomial
resulting from P, (z)

f@)y=2"+na* —2n+1)a®+(n+2)2? — 2241

and its roots o, ..., p®).

Again, the real root is found by looking for a sign change. The determi-
nation of the position of the complex roots is laborious: With Lemma 4.3
we construct a circle around one root of a pair of complex roots. Around
the circle we put a square whose corners will give an approximation of the
absolute value of the root.

(i)+(ii) Real root p") of Py (x):

For the real root o) of f(z) we have

oty 52
n—2+4+—<o"V<-—n—2+—,
n n

because of the inequalities

1 _8_9nT 6 5_ 4_ 3 2_
f(—n—z‘i‘ﬁ) _ —n°—2n'+17n°+43n ign 42n°+4+35n°—10n+1 <0

and

2 7 6 5 4 3 2
f(—n — 24 E) _ 8n'+48n°+37n —156nn5—48n 4248 n* =160 n+32 >0

for n > 4. The Approximation for [p(| and for |p(M) — 1] follows.
(iii) First pair of complex roots p2 = p3) of P, (z):
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For an approximation of the roots 0@ = o) of f(z) with Lemma 4.3 we
choose a = 271% + ﬁ for n > 4. For these n we have 0 < R(a), () < 1.

It is f(a) # 0 and f'(«) # 0. The real part of 5}{((3)) is

5(96 16 —16 n154-48 n*—240n13 478 n12 42701 —16 n104-78 n9+...)
4n? (16 n17+64n16432n154+48 n11+16 n13+76 n12+112n11—-13n104149n%+..)

and the imaginary part is

5(16n16+32n15420n'4+48n13—8n'24+104 0!t —29 110438 n%+...)
2y/n (16 n174+64n164+32n15448 n1d+16 n134+76 n12+112n11 -13 0104149 n9%+...)"

For all n > 4 we have 0 < (o — %(z))) < 1. For 4 < n < 10 the complex

number o — ?,c((z)) lies in the second quadrant with —1 < R(a — 21y < .

f'(a)
For n > 10 we have 0 < R(a — E}J,c((g))) < 1.

Let C be the circle through o and o — E}J,c((z)) with exact diameter

5f(a)
f(@)
for n > 4. The root o(!) lies not inside and not on the circle (since it lies
close to —n — 2). Lemma 4.3 shows that there is (at least) one root ¢(?) of
f(z) inside the circle C. To find an approximation of the distance of o(?)
to the origin we construct a square around C.

Eq JoR

E3 E4

FIGURE 1. Approximation of o(?
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The center of the circle is o — 25 JJ:,((?;)) . Starting there we construct the corners

of the square. Since the inequality

5f(a)
f'(a)
holds for the square of the diameter of the circle for all n > 2, it follows

that the radius of the circle is less then m. With this we determine

2
_ _25(16n15472010—16n 5457t 44 n13424n 24 10n 1) _ 25
T An*(16n17T+64n164+32n154+48 n1t+16 n13 476 n12+112 011+ ) 4n(n + 1)2

the corners of the square as
o 5f(a) 5 n 6%
2f"(a)  4yn(n+1)  4y/n(n+1)

and obtain
Ey — —5n1942n185 2001850175 -10n1"+4... + An18420n174+29 104 .. i
L= T4n25 (n D) (n T +4n10+2n5+3n12.) 4y/n (n+1)(n17+4n16.) ©
By — 5n942n18:5420n18—5n175410n17+... 4n'8420n17429 0104 . i
2= 25 (n+ D) (nT+4nt04+2n5+3n11)) 4/n (1) (niT+4nto4 ) ©
B — —5n1942n185 200185075100 "+... An'8410n!"—11 0164 i
3T An25 (nr)(nT+4n 0425 +3 nli ) 4/n(n+1)(nl7+4nl64.) ©
Ey = 5n942n18:5420n18—5n175410n17+... Ant84+10n1"—11n164... i

T AR5 (n+1)(nT+4n142n15 304+ ) T 4/ (n+1)(n1T4+4nl6 1)
We see that the corners Fy and Ej3 lie in the second quadrant for all n > 4.
Moreover the signs of the coefficients show that the distance from FEj to
the origin is less than the distance of Fs to the origin. Therefore we get
the following approximation for [o(?)|:

S(Bs)| < o] < |Bal.
With the inequality

4n'® 41007 — 1100 4 . 1
%(Eg) = >
4ynn+1)(n'T+4n164+..) " 2¢/n
which holds for all n > 4 and with the approximation (for n > 4)

_ 50194971854 9 An® 120174 . 9 (1/2) 2
’EQ‘ - ((4712!5 (Z—l—l)(nn”—l—élnm-‘r...)) + (4\/ﬁ(r?+l)(n1?+4n16+...)) ) < %

the assertion for [p(?)| follows.

(iv) The translated number p?) — 1:

Before approximating ‘9(2) — 1‘ we remark that the translation by —1
changes only the real part which makes things a little bit more complicated
than for real roots.

The corners of the square Ei,...FEy lie close? to the origin. Therefore
the translation of p® by —1 yields the situation shown in Figure 2.

2For all n > 4 the inequality 0 < R(E;) < 1 holds for i = 2,4 and —1 < R(E;) < 0 holds for
j=1,3and 0 < (E;) < 1 holds for i =1,2,3,4.
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E—1 By —1 2 2
o _|__________ .
: e Y I
7 @ N I
| A
1/ v
1! \
l o® !
! ® !
1Y "
\ A
! /1
1 N oo Bf(e) 4 |
| ~ f(a) s |
P I o
E3—l E4_1 Es E4
1
|
—1

FIGURE 2. Approximation of o2 —1
Now all new corners Fq1 — 1,...E4 — 1 lie in the second quadrant and we
get the approximation
B — 1] > ‘9(2) - 1‘ > By —1].
The computation yields the inequalities
_ _5n191 0,185 9 An18120017 4 . 9 (1/2) 6
1B -1 = (it — VP et <yt &
for n > 144 and
_ 501949185 9 An® 110174, 9 (1/2) 3
’E4_1‘ - ((4n2v5 (2—1—1)(71”17—}—47116—&—...) _1) +(4\/ﬁ(7?+1)(n1?+4n16+...)) ) > 1+R
for n > 141. The assertion for p(2) — 1 follows.
(v) Second pair of complex roots p*) = pﬂof P.(x):

The approximation of the roots o* = o) of f(x) is analogue to the
preceding approximation. In this case we chose a =1 — % + % + ﬁ and

. 5 .

again we have f(a) # 0 # f’(a). The real part of f{((g)) is

—5(2n17—99 1164269115 —1653n1*+4000 113 - 1411212427794 n11 —68041 n'0+120950 n°+...)
n2 (4n174+24 n10+68 nT5+457 n11—496 n13+6296 n12—10300 n11+36408 n10—53116n9+...)

and the imaginary part is

5(10n164+12n1°+89 114 —50n1341092n12 —1186 11 +4850 10 —5108 n+...)
Vn(4n1T4+24 116468 n154+457 n11—496 n13+6296 n12—10300 11 +36408 n10—53116 n9+...) *
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For n > 4 the real part of a — ?ﬁf((z)) is greater than zero and the imaginary

part of this number is positive for n > 6: for n > 6 both o and o — ?ﬁf((z)) lie

in the first quadrant. As before the real and the imaginary part are both
smaller than 1.

Again we construct a circle C' and an enclosing square with corners
Ry, ... Rs. We get the approximation of the diameter of the circle

5f(a) 2 _ 25(25n'8 89717449116 1286 n15+4809n'*—11164 1134294140124 ...) @
f/(Oé) - n? (4nl7+24n16468 n154+457n11—-496 n13+6296 n12—10300 n11+...) 4n3
for all n > 0. The computation of the corners R1,..., R4 of the square in
the form
o 5f(a) 25 n 251
2 () 4ny/n 4ny/n
yields:

Ry — 4n2054920n195-25n19461n1854. .. + 8n18448n174+376 n104+1319n15+. ..
1= 4n20:5424 0195468 n1s:5+. . 8n18:54+48 n17:54+136 n16:54+914 01554+

Ry — 4n295420n19:5425 n19461 n185 4. + 8n18 4480174376 n16+1319n15+. ..
2 4n20:5424 0195468 n1854. 8n1854+48 n17:5+136 n16:5+914n15:5+ ..

Ra — 4n205420n195_-25n19461 11854 .. + 8nl8—52nl7—-224n16—-381nt5+..
3 = 4120542470195 168 n18:54 8n18:5 48 n17:5 4136 n16:5+914 0155

Ry — 4n2054920n195425 019461 n1854 .. + 8nl8—52n17—2247n16_381nlo+... i
4= 412054240195 168 n1854 8n185 48 n17 54136 n16:5+914nt5.54+ | °

All corners lie in the first quadrant® for n > 10. An approximation for o(¥
is therefore

|R3| < ‘9(4)‘ < |Ra].

For n > 174 we get the approximation

IRy| = (n20,5+5n19,5+_")2 +( 184 6m17 447 16 )2 (1/2) - 1_1
2 0B 16105 8516175+ 17 ni65 1.

and for n > 49 the approximation
20,5 19,5 18 17 (1/2)
|R3| = ((220,512219,5+:::)2 + (23?8,5+13217,5;{,‘_”)2) >4/1— %
Hence the assertion for p(® follows.
(vi) The translated number p*) — 1:
For the approximation of oY) —1 the observation R(R;) < 1for 1 <i < 4

is helpful: this is why all corners R; —1,... R4—1 lie in the second quadrant
(see figure 3) and we have

’R1—1’ > ‘Q(4)—1‘ > ’R4—1|.

3Exact1y: R(R3) > 0 for n > 4 and S(R3) > 0 for n > 10.
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Ry -1 Ry —1 Ry Ro

Rz —1 R4y —1 Rs3 Ry

FIGURE 3. Approximation of o® and o) — 1

We get the inequality

5 5 1/2)
_ n20:545n195_ 2 n1846nt74+47n16. . 2 ( 14
|R1 - 1| = <<—n20,5+6n19,5+'“ - 1) + (n18,5+6n17,5+17n16,5_”) <A\ 135

for n > 54, and the inequality

Ry —1| = ((M_l)er( 271813017 )2)0/2) . /5

n2054+6n1954 2n185412n1754 6n

for n > 139. Hence the assertion for p(*) follows.

(vii) Position of 0® and o¥ :

Finally we have to show that o(®) and o® (and therewith p(® and p®*)
are different. This is true because of the position of the roots (the first one
close to 0 and the second one close to 1) or rather of the position of the
enclosing squares.

Consider first the square belonging to the number oo = # + \/Lﬁ The real
part of the right upper corner Es is (more exactly than before)

19 18,5 18 _ 17,5 17_1,.16,5 16 15,5 15 25
§R(E2): S5n?42n +20n 5n +10n 5N +15n"°4+5n +5n +...+ 1507

n
024
4n25 (1) (nl74+4n1642n1543nldnl3 9 pl2 7 pily 4 25 :
1 1024
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Ry R2
B By

Es B, R3 Ry

0,2

FIGURE 4. Position of the roots o and o™ in the first quadrant

For the second square belonging to the number o = 1 — % + % + ﬁ the
real part of the left upper corner R; is (more exactly than before)

(4n10420 018250172461 n17—150n 1054 427 164 4 492075)
n2 (AnT7+24nT0+68 n15+457 n11—496 n13+6296 n12—10300 n ' +...— 437400 n+164025) °

R(Ry) =

For these real parts we have R(E>) < 1 < R(Ry) for all n > 4. Hence we
have the situation as shown in figure 4.* This implies that both squares are
disjoint and that the roots o2 and o® differ. So Lemma 4.4 is proven. [

With these approximations we know the position of the five roots of
P,(x) for n > 7 (see Lemma 4.2) and for n < —175 (see Lemma 4.4)
sufficiently to prove Theorem 4.1.

Proof of Theorem 4.1. First we consider n > 7. To show the independence
of the units p and p — 1 we assume their dependance in the form pF =
+(p—1)! with k,1 € Z. If this equality holds then it holds for all conjugates
too in particular for p(l) and p®). With the approximations in Lemma 4.2
we have [p()] < 1 < [pM 1| and [p®) —1] < 2 < 2 < |p®)| < 1. Let k > 0.
The inequality for the first conjugate implies [ > 0 while the inequality for
the third conjugate implies I < 0. Hence there is no [ with p* = £(p — 1)

Analogue considerations yield a contradiction for £ < 0. Hence the units
p and p — 1 are independent for n > 7.

Now we consider n < —175. In this case by Theorem 2.1 there are one
real and two pair of complex roots. Suppose p¥ = +(p — 1) with k,l € Z.
By Lemma 4.4 we have 0 < |[p?)| <1 < [p® — 1| <2and 0 < [p®¥ — 1| <
IpW| < 1; for k > 0 this implies [ < 0 for the second conjugate and I > 0

4Both imaginary parts tend to 0 for n — oo whereas S(R1) > S(F2) holds for all n > 0.
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for the forth conjugate. For k < 0 an analogue argumentation yields a
contradiction too.

To prove the fundamentality of these units in the equation order Z[p] we
compute an upper and a lower approximation of the regulator. Since the
field extension Q(p)/Q generated by P, (x) has no intermediate fields and
since |disc(Z[p])| = 16(4n3 — 28n? + 24n — 47)% > 5° for n < —175 we use
the lower regulator bound given by Pohst/Zassenhaus ([15], 5.6.22)

; <log((4n3—28n2+24n—47)2))2
55

7 >0/ = .

Rea(Zlr) > |2 K

For n < —175 and \/55 < 56 estimations of this bound yield
2
\/§ L[, 4n3
536 ({5
2
\/§ 1 —4n3
= —— | log E
59 V5

1 2
> ——=(3log(—n) — log(14 =: R,.
N NE (3log(—n) — log(14)) ”
An upper regulator bound is computed with the help of the approxima-
tions of p(1) and p® given in Lemma 4.4:

Reg(Zp])

log |p)| 2 log [pt*)] > ‘
Reg(Z = | det
8(Zle) ‘ ( log [p") — 1] 2 log|p®) —1|

= 2 (1og|p"| log|p® — 1] — log|p™ 1] log o))
1 5

< 2 (log(—n+2+ ) (—log [ (=)0 ))).

< 2 (logt-n+2+ 3 (-og (D)12))

The last inequality follows from |[p") — 1| > 1 and |p*)| < 1. Therefore we
get the upper regulator bound

Reg(zlg) < (tog(-n) +1ox(1 = 2 = 1)) - (log(-n) +10x(D)).

which is simplified with n < —175 to
2 6
< <log(—n) + log(1 + m)) : (log(—n) + log(g)) = R,.

The quotient 1% of upper and lower regulator bound is smaller than 2 for
n < —130. Hence {p,p — 1} is a set of fundamental units of Z[p] for all
n < —175.
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The independency and the fundamentality of the units p and p — 1 in

the equation order Z[p] for —174 < n < 6 are shown by calculations with
KANT [5]. O
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