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Abstract. In this article we compute fundamental units for three para-
metric families of number fields of degree 4 with unit rank 2 and 3 gen-
erated by polynomials with Galois group D4 and S4.

1. Introduction

Let F be a number field generated by a zero ρ of a monic irreducible poly-
nomial f ∈ Z[x]. Let nF be the degree of F and rF the unit rank of F .
The computation of the unit group of an order of F can be done by several
methods like the Voronoi algorithm (rF ≤ 2), successive minima and other
geometric methods using parallelotopes and ellipsoids. If f defines a para-
metric family of polynomials it is a problem to give the fundamental units
of F in a parametric form, in particular for increasing degree nF and rank
rF .

In this article we only consider parametric families of quartic fields. In this
case nF = 4 Stender ([16], [17]) has obtained families with unit rank 2. Some
families with unit rank 3 are described in the biquadratic case ([15], [1], [3],
[18]). In the non-biquadratic case families are published in several articles
for example by Washington ([19]), by Lecacheux ([5, 4]), by Lettl and Pethö
([7]), by Nakamula ([10]) and by Niklasch and Smart ([11]). These families
are different from the three presented here: In [19, 7] cyclic number fields
are studied, and the families in [5] are also abelian with Galois group C4

or V4. The polynomials in [11] have Galois group S4, and the generated
number fields have unit rank 2. While in [4] the generating polynomials
have Galois group D4, the generated number fiels are totally real with unit
rank 3. And in [10] there are parametric polynomials with Galois group D4

considered: while the first family of number fields has unit rank 1 and the
last has unit rank 3, the second has unit rank 2. This family generates for
almost all choices of the parameter number fields with signature (2, 1), but
the polynomials with Galois group D4 of our first family have for different
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choices of the parameter infinitely often signature (2, 1) and (4, 0). The
other two families presented here have Galois group S4 and signature (4, 0).

In section 2 of this article we compute parametric units for a family of
number fields presented in [6]. There we have constructed polynomials
Fn(x) of degree n by using elliptic curves with rational points of order n.
The polynomials have Galois group either the dihedral group Dn of order
2n, or the cyclic group Cn of order n. Here we consider the case nF = 4,
and we compute parametric units which form a system of fundamental units
under some conditions. In [14] the case nF = 5 is examined.

In the last two sections, we present two new families of totally real quartic
number fields and compute parametric systems of fundamental units. The
first family arieses from the same idea as the families in [10] but is not
included there.

2. Family with Galois group D4 or C4

For n ∈ Z we consider polynomials

Fb(x) := x4 − nx3 + b(n− 1)x2 + 2b2x− b3.

These polynomials were already considered in [6] for other purposes. They
have discriminants

db = d(Fb) = (4(n− 4b) + 1)(n2 + 4b)2.

To compute parametric units of the number fields F generated by Fb we
consider only b = ±1. Furthermore we assume from now on that (b, n) ∈
{(−1,±2), (1, 0), (1, 4)}, hence the polynomials Fb are irreducible.

Theorem 2.1. The polynomial F1 has the signature (2, 1) for n ≤ 3 and
the signature (4, 0) for n ≥ 4. The polynomial F−1 has the signatures (2, 1)
for n ≤ −5, (0, 2) for n ∈ {−4,−3,−1, 0, 1} and (4, 0) for n ≥ 3.

For n ≤ 3 the discriminant d1 is negative, for n ≥ 4 it is positive. Because
of F1(0) = −1 the polynomial F1 has at least one real zero, hence all zeros
are real.
The discriminant d−1 is negative for n ≤ −5, and positive for n ≥ −4.
For n ≥ 3 we have F−1(1) = 1 − n + (1 − n) + 2 + 1 = 5 − 2n < 0 so
that F−1 again has one and therefore 4 real zeros. In the remaining cases
n ∈ {−4,−3,−1,−0, 1} one easily checks that the signature is (0, 2).

We want that the polynomials Fb generate quartic fields containing exactly
one quadratic subfield. A candidate for the discriminant of (an order) of
such a quadratic field is clearly n2 ± 4. Therefore we make a
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First Assumption: n2 + 4b is not a square. Clearly, this is tanta-
mount to (n, b) 6= (0, 1).

Theorem 2.2. Ωb := Q(
√

n2 + 4b) defines a quadratic number field. The
polynomial Fb splits over this field as follows. We have

Fb(x) = (x2 + εx− εb)(x2 + ε̄x− ε̄b)

with a unit ε = 1
2
(−n +

√
n2 + 4b) ∈ Ωb of norm −b. (By ¯we denote the

non-trivial automorphism of a quadratic field.)

The proof is by a straightforward calculation.

Remark It is well known [9] that n2 ± 4 is square-free for infinitely many
n ∈ Z, hence ε is the fundamental unit of Ωb in those cases, except for
n = 3, b = −1, where ε is the cube of the fundamental unit.

Remark If Fb is irreducible with Galois group V4 then 4(n − 4b) + 1 is a
square.

Theorem 2.3. If 4(n− 4b) + 1 is not a square in Z the polynomial Fb has
Galois group D4 or C4.

The polynomial Fb is irreducible over Q if and only if the polynomial

x2 + εx− εb

is irreducible in Ωb[x]. That polynomial is reducible if and only if α :=
ε2+4εb is a square in Ωb. But in that case N(α) = N(ε(ε+4b)) = 4n+1−16b
is a square in Q which is in contradiction with our premises. Together with
the preceding remark we obtain the theorem.

We note that 4n+1−16b is a square if and only if n = u2 +u+4b for some
u ∈ Z.

Because of Theorem 2.3. and because we want to have Galois group D4 or
C4 we make a

Second Assumption: 4(n− 4b) + 1 is not a square in Z.

Theorem 2.4. The polynomial Fb generates a Galois extension over Q
(with Galois group C4) if and only if for α := ε2 + 4εb the quotient α/ᾱ is
a square in Ωb. The latter is tantamount to 4(n− 4b) + 1 being a square in
Ωb.
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At this stage we know that a root ρ of Fb generates a quartic extension of
Q. Hence, the square-roots of α = ε2 + 4εb and of ᾱ generate quadratic
extensions of Ωb. If and only if these extensions coincide, either of them
will be a cyclic extension of Q. In that case, we have

√
α = µ + ν

√
ᾱ with

elements µ, ν ∈ Ωb. Squaring this equation leads to µν = 0, hence µ = 0.
Therefore α/ᾱ must be a square in Ωb. Because of

α

ᾱ
=

N(α)

(ᾱ)2

and N(α) = 4n + 1− 16b the theorem follows.

As mentioned in Theorem 1.4 the polynomial Fb has Galois group C4 if
and only if 4n + 1 − 16b is a square in Ωb. The latter is tantamount to
v2(1 + 4n− 16b) = n2 + 4b with n, v ∈ Q.

Theorem 2.5. The polynomial Fb generates a Galois extension over Q with
Galois group C4 only for (b, n) ∈ {(1, 8), (−1,−3), (−1, 7)}.

To prove this we first consider b = 1. That means we want to solve v2(4n−
15) = n2 + 4 which implicates n1/2 = 2v2 ±

√
4v4 − 15v2 − 4. We have

n ∈ Q if 4v4 − 15v2 − 4 is a square in Q, in other words if the elliptic
curve E1 of equation y2 = 4v4 − 15v2 − 4 has at least one rational point
(v, y) ∈ Q2.

The Weierstraß form of E1 is

z2 = t3 − 11t− 890.

Computations with the computer algebra system Magma [8] show that
E1(Q) ' Z/4Z = {O, P1, P2, P3}, with

z t y v
P1 136 27 ∞ ∞
P2 0 10 0 -2
P3 -136 27 ∞ ∞

That means in the case b = 1 we get the Galois group C4 only for n = 8
corresponding to the polynomial x4 − 8x3 + 7x2 + 2x− 1.

For the second case, b = −1 the same considerations yield: n1/2 = 2v2 ±√
4v4 + 17v2 + 4 has to be a rational number which implies the existence of

rational points on the elliptic curve E−1 of Weierstraß equation

z2 = t3 − 12987t− 263466.

Computations show that E−1(Q) ' Z/8Z = {O, P1, P2, . . . , P7}, where
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t z v y
P1 -21 0 ∞ ∞
P2 -102 0 0 2
P3 -57 -540 -1 5
P4 -57 540 1 5
P5 303 4860 1 -5
P6 123 0 ∞ ∞
P7 303 -4860 -1 -5

Hence in the case b = −1 we get the Galois group C4 only for n = −3, 7
which corresponds to the polynomials x4 +3x3 +4x2 +2x+1 and x4−7x3−
6x2 + 2x + 1.

From now on we assume that Eb is a quartic number field generated by a root
ρ of Fb over Q, and Fb has Galois group D4. Our construction immediately
leads to two independent units of Eb, namely ρ itself and the unit ε of Ωb.
We will further restrict our considerations to fields Eb of signature (2, 1).
In that case those two units form a maximal independent set of units of
Eb. For the signature (4, 0) our efforts to find a third independent unit in
parametric form were unsuccessful.

In the remainder of this section we show that ρ and ε form a set of funda-
mental units for the order Z[ρ]. This also means that they form a system
of fundamental units for the field Q(ρ) whenever n2 + 4b and 4(n− 4b) + 1
are square-free and coprime.

Remark From 16(n2 +4b) = (4n+(16b−1))(4n− (16b−1))+(16b+1)2

we conclude that a common factor of n2 + 4b and 4(n− 4b) + 1 necessarily
divides (16b + 1)2.

We use a lower regulator bound of Nakamula [10]. Proposition 3 of his
article states that the quotient of the regulators of Eb and Ωb is bounded
from below by

L :=
1

2
log

 3

√
|4(n− 4b) + 1|(n2 + 4b)2/4 +

(
317

27

)3

− 290

27

 .

We need to give a lower estimate for L. We start with the radicand of the
cubic root. For n ≤ −10 it is of the form

|n|5(1 + λ)

with:

λ >

{
15
4|n| + 8

n2 + 0.048 for b = 1

− 17
4|n| −

8
n2 + 0.051 for b = −1
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From this we conclude

L >
1

2
log

(
|n|(5/3)(1 + λ/3− λ2/6)− 290

27

)
resulting in

L >
2

3
log |n|.

Next we compute an upper estimate for the regulator REb
of the independent

units ρ and ε. We choose the first two conjugates ρ(1) and ρ(2) of ρ for this
purpose, and get

REb
= | det

(
log |ρ(1)| log |ρ(2)|
log |ε| log |ε|

)
|

= | log |ε|| | log
|ρ(1)|
|ρ(2)|

| .

We begin by estimating the quotient |ρ(1)/ρ(2)|. We have

ρ(1)

ρ(2)
=

−ε +
√

ε2 + 4bε

−ε−
√

ε2 + 4bε
.

We easily compute

µ := ε2 + 4bε = (n2 − 4bn + 2b− (n− 4b)
√

n2 + 4b)/2.

One obtains the estimates

Lε < ε < Uε,

where

Lε := |n|+ b/|n| − 2/n3 , Uε := |n|+ b/|n|,
and

Lµ <
√

µ < Uµ

where

Lµ := |n|+ 2b + (b− 4)/|n| − 2/n2 − (8b + 2)/|n|3 − 4b/n4

and

Uµ := |n|+ 2b + b/|n|+ 2/n2.

By considering the cases b = ±1 separately, one obtains∣∣∣∣ρ(1)

ρ(2)

∣∣∣∣ < C =
|n|+ 1.11

0.779

for |n| ≥ 10.

If the unit group U := 〈−1, ρ, ε〉 is a proper subgroup of the full unit group
UZ[ρ] of Z[ρ], then the regulator of Eb divided by the regulator of Ωb is
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≤ log(C)/2. Showing log(C)/2 < L therefore proves that ρ, ε are a set of
fundamental units for Z[ρ]. Again, it is easy to see that

1

2
log

|n|+ 1.11

0.779
<

2

3
log |n|

is tantamount to
|n|+ 1.11

0.779|n|4/3
< 1

and the latter is satisfied for all n < −5.

Theorem 2.6. In case the field Eb = Q(ρ) is generated by Fb with di-
hedral Galois group, then ρ and ε are fundamental units of the order Z[ρ].
They are even fundamental units of Eb, when 4(n− 4b) + 1 and n2 + 4b are
both square-free and coprime.

The estimates above prove the theorem for n ≤ −10. For larger values of n
the prove is by directly calculating the unit group of Eb with KANT [2].

3. A parametric family of number fields of degree 4

In this part we consider the parametric family of polynomials of degree 4
defined by f(x) = x4 + ax3 − 2x2 + (1 − a)x + 1. This family arises by
the same idea of construction as the families in [10], but there only the
cases with Galois group D4 are presented. The constructive idea is the
assumption that ρ, ρ + 1 and ρ− 1 are units of the number fields generated
by x4+ax3+bx2+cx+1 (with ρ a zero). In this way one gets three families,
two of them are studied in [10] (x4 + ax3 − bx2 − ax + 1 with b ∈ {1, 3}),
the third family f(x) is presented here. By straightforward calculation it
is easily seen that these polynomials are irreducible and have (for a ≥ 3)
four real roots. They generate for a ∈ N, a ≥ 3 number fields F = Q[ρ]
of signature [4, 0] with rank rF = 3. For a ∈ {±1, 0, 2} the number fields
have signature [2, 1]. And for k ∈ Z the polynomial f generates the same
number field F for a = k and a = 1− k, hence there is no need to consider
a < −1.
In the following we therefore only consider the case a ≥ 3.

Remark Computation of examples suggests that for infinitely many a the
discriminant df = 4a6 − 12a5 + 28a4 − 36a3 − 56a2 + 72a− 283 of f has no
quadratic factors which implies that the order Z[ρ] is maximal and DF = df ,
and the polynomials f generate infinitely many number fields.

Theorem 3.1. The index of Z[ρ] in the maximal order of the number field
F generated by f is not divisible by 5 or 13 for all a ≥ 3.
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For a ≡ 3 (mod 5) (and only for these a) we have df ≡ 0 (mod 25)
but df 6≡ 0 (mod 53). The Dedekind test shows that the order Z[ρ] is
in this case (and therefore in all cases) already 5-maximal. Similarly for
a ≡ 7 (mod 13) (and only for these a) we have df ≡ 0 (mod 132) but
df 6≡ 0 (mod 133). Again Z[ρ] is already 13-maximal. Thus this order
is maximal if the discriminant is divided by only the quadratic factors 25
and/or 169.

Remark Computations show that for 3 ≤ a ≤ 2000 there are only 26
number fields with non-maximal order Z[ρ]: a ∈ {80, 143, 326, 380, 406, 425,
450, 537, 609, 620, 699, 979, 984, 1044, 1049, 1106, 1138, 1235, 1386, 1498, 1508,
1540, 1667, 1695, 1825, 1906}. These fields are partly described with k ∈ N
by a = (3 + k · 23) · 23 + 11 (that are a = 80, 609, 1138, 1667) where df

is divisible by 232, and by a = (19 + k · 23) · 23 + 13, (that are a =
450, 979, 1508) where df is again divisible by 232. The discriminant df is
divided by 292 for a = (4 + k · 29) · 29 + 27 (that are a = 143, 984, 1825)
or a = (24 + k · 29) · 29 + 3 (that are a = 699, 1540). Or df is divisible
by 312 and we have a = (13 + k · 31) · 31 + 22 (that are a = 425, 1386) or
a = (17 + k · 31) · 31 + 10 (that are a = 537, 1498). On the other hand,
with the choice of a in one of these sets of parametric natural numbers we
always have that df is divisible by the corresponding square.

Theorem 3.2. The four zeros of f lie in the following four intervals:

ρ1 ∈ [−a− 1

a
− 1

a2
,−a]

ρ2 ∈ [−1 +
1

a2
,−1 +

1

a
]

ρ3 ∈ [
1

a
,
1

a
+

1

a2
]

ρ4 ∈ [1− 2

3a
, 1− 1

2a
]

For a ≥ 4, one shows that f(xmin)f(xmax) < 0, where (xmin, xmax) ∈ {(−a−
1
a
− 1

a2 ,−a), (−1 + 1
a2 ,−1 + 1

a
), ( 1

a
, 1

a
+ 1

a2 ), (1− 2
3a

, 1− 1
2a

)}. This proves the
theorem.

Remark Because ρ3 < 1
a

+ 1
a2 < 1

2
< 1 − 2

3a
< ρ4 we get the following

inequalities for the zeros of f :

−a− 1 < ρ1 < −a < −1 < ρ2 < 0 < ρ3 <
1

2
< ρ4 < 1

Theorem 3.3. The polynomial f has Galois group S4.

To show this we first look at the cubic resolvent rf of f . As in [13], we
get rf (x) = x3 + 4x2 + a(1 − a)x + 1 with discriminant d(rf ) = d(f) =
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−4α3 + 16α2 + 72α− 283 with α = a(1− a). The resolvent rf is irreducible
and we observe that d(rf ) > 0 for a ≥ 3. Moreover the discriminant is not
a square in Q because y2 = d(rf ) defines an elliptic curve which has no
rational point except ∞. This implies that rf has Galois group S4 and the
theorem follows.

Let ρ be a zero of f . In the number field Q(ρ) the element ρ is obviously
a unit. Moreover, by definition of f the elements ρ + 1, ρ − 1 ∈ Z[ρ]
are units as well, and (ρ + 1)−1 = ρ3 + (a − 1)ρ2 − (a + 1)ρ + 2, and
(ρ− 1)−1 = −ρ(ρ2 + (a + 1)ρ + (a− 1)).
With ρ− 1 and ρ being units, their quotient ϑ := ρ−1

ρ
is a unit too.

Theorem 3.4. The three units {ρ, ρ+1, 1− 1
ρ
} form a system of independent

units of the order Z[ρ]. Moreover this set is a system of fundamental units
for a ≥ 3.

To show this, we first assume (ρ+1)k = ±ρl with k ∈ N, l ∈ Z. This implies
that |ρ + 1|k = |ρ|l. Let k > 0. Because of 1 < ρ4 + 1 < 2 and 0 < ρ4 < 1
we get l < 0; with a − 1 < |ρ1 + 1| < a < |ρ1| < a + 1 we get l > 0 which
yields a contradiction.
The pairwise independency for the other two cases is shown in a similar way
with the help of the sequence of inequalities for ϑ (for a > 3):

2− a < ϑ3 < 1− a < −1 < − 1
a

< ϑ4 < − 1
2a

< 0 < 1 < ϑ1 < 3
2

< ϑ2 < 3.

Now we assume that ϑk = ±ρl(ρ + 1)m where k, l, m ∈ Z. Without loss of
generality let k > 0. If l,m > 0 then the image of the canonical embedding
ϕ2 with ρ 7−→ ρ2 yields |ϑ2|k = |ρ2|l|ρ2 + 1|m which is impossible because
the left hand side is > 1 and the right is < 1. The consideration of the
other canonical embeddings ϕ1, ϕ3 and ϕ4 leads also to contradictions in
the remaining cases.
Thus we have shown that the three units ρ, ρ + 1 and ϑ are a maximally
independent set of units of Q(ρ).

A lower bound for the regulator R of the unit group of the maximal order
of Q(ρ) is given in [12]:

R ≥

√
(
(log( |DF |

16
))2

20
)3

1

8

(In general we have DF = c2 · df for some constant c ∈ N, but in infinitely
many cases (see first Remark of this section) the order Z[ρ] seems to be
already maximal, so c = 1 as assumed. The inequality holds in general for
Z[ρ] replacing DF by df .)
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With Df > 64
17

a6 for a ≥ 49 we get the lower bound Rlow of the regulator:

1√
64000

(
log

(Df

16

))3

≥ 1

253

(
6 log(a)+log

( 4

17

))3

≥ (6 log(a)− 1.5)3

253
=: Rlow

The regulator Rρ for a system of independent units {ρ, ρ + 1, ϑ} of Z[ρ] is
defined by

Rρ =

∣∣∣∣∣∣det

 log(|ρ1 + 1|) log(|ρ1|) log(|ϑ1|)
log(|ρ3 + 1|) log(|ρ3|) log(|ϑ3|)
log(|ρ4 + 1|) log(|ρ4|) log(|ϑ4|)

∣∣∣∣∣∣
Computing the determinant and taking into account the size of the argu-
ments of the logarithms, respectively the signs of the values of the loga-
rithms, we can estimate Rρ from above:

Rρ ≤ log(|ρ1 + 1|) log( 1
|ρ3|) log( 1

|ϑ4|) + log(|ρ1|) log(|ϑ3|) log(|ρ4 + 1|)+
log(|ρ4 + 1|) log( 1

|ρ3|) log(|ϑ1|) + log( 1
|ρ4|) log(|ϑ3|) log(|ρ1 + 1|)+

log( 1
|ϑ4|) log(|ρ3 + 1|) log(|ρ1|).

Now all factors are positive. Using the approximations of ρ and ϑ and
the inequalities log(2) < 0.7, log(1 + 1

a
) < 0.02 and log(1 + 1

a
+ 1

a2 ) <

log(1 + 1
a

+ 1
a2 + 1

a3 ) < 0.021, one shows that for a ≥ 50:

Rρ ≤ log(a)3 + 1.461 · log(a)2 + 0.05822 · log(a) + 0.00042 =: Rup

Finally, we obtain

1 <
R

Rlow

<
Rup

Rlow

< 2,

where the last inequality holds for a > 44. This comes from the inequality
Rup

Rlo
(log(44)) < 2 and because the quotient is monotonic decreasing for a >

44. So the index of the unit system {ρ, ρ+1, ϑ} in a system of fundamental
units is lower than 2, which implies that for a > 50 the units {ρ, ρ+1, 1− 1

ρ
}

are fundamental units of Z[ρ].

The remaining cases 3 ≤ a ≤ 44 are proved by direct calculations with
KANT [2].

4. A second family of number fields of degree 4

In an analogous way as in Section 3 we show that for the family of polyno-
mials fa(x) = x4−(a2 +a+1)x2 +(a2 +a)x−1 the set {ρ, ρ−1, ρ−a} forms
a system of fundamental units of the number field generated by a root of
fa.



UNITS IN SOME PARAMETRIC FAMILIES OF QUARTIC FIELDS 11

Calculations show that the fa(x) are irreducible and have four real roots for
a 6∈ {0,±1,−2}. Computations of examples suggests that for a ∈ Z≥2 the
fa generate infinitely many number fields of signature [4, 0] with unit rank
3. For a ∈ {0,±1,−2} the number fields have signature [2, 1]. Moreover
fa and f−a−1 generate the same number field, hence there is no need to
consider a < −2.

In the following we therefore only consider the case a ≥ 2.

The discriminant of fa is df = 4a10 + 20a9 + 9a8 − 84a7 − 74a6 + 156a5 +
169a4−60a3−396a2−320a−400. Computations show that df ≡ 0 mod 24

but df 6≡ 0 mod 25 for any a ∈ Z, and df ≡ 0 mod 52 for a ≡ 0, 4 mod 5
but df 6≡ 0 mod 53 for any a ≡ 0, 4 mod 5. Using the Dedekind test for
the maximality of an order we get:

Theorem 4.1. The index of Z[ρ] in the maximal order of the number field
generated by fa is not divisible by 2 or 5 for all a ≥ 2.

Numerical approximations of the roots of fa lead to:

Theorem 4.2. The four roots of fa lie in the four intervals:

ρ1 ∈ [−a− 2,−a− 1]

ρ2 ∈ [
1

a3
,

1

a2
]

ρ3 ∈ [1− 1

a2
, 1− 1

a3
]

ρ4 ∈ [a +
1

a4
, a +

1

a3
]

As in Section 3 we compute the Galois group of fa with the cubic resolvent
rfa = x3 + 2(a2 + a + 1)x2 + ((a2 + a + 1)2 + 4)x + a2(a + 1)2 to S4. The
roots of fa are units and we have:

Theorem 4.3. The three units {ρ, ρ − 1, ρ − a} are independent units of
the order Z[ρ]. They form a system of fundamental units for a ≥ 2.

To prove this theorem the following proposition is helpful:

Proposition 4.4. The three units {ρ, ρ− 1, ρ− a} are independent if and
only if {ρ, ρ−1

ρ
, ρ(ρ− a)} are independent.

The independency of {ρ, ρ−1
ρ

, ρ(ρ− a)} is proved similarly to Theorem 3.4.

The fundamentality of the set of Theorem 4.3 is proved by approximations
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of the regulator as in 3.4:

Rlo =
(10 ln a + ln(1

4
) + ln(1 + 5

a
))3

√
64000

and
Rup = 8.07 ln3 a + 3 ln2 a

which implies
Rup

Rlo

< 3

for a ≥ 150. Finally we have to show that any unit of the form θ =
±ρm1(ρ−1)m2(ρ−a)m3 with mi ∈ {0, 1} is not a square in the order Z[ρ]. For
(m1, m2, m3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)} there ex-
ists for all a ∈ Z a negative conjugate of θ which implies that θ can-
not be a square. In the remaining case (m1, m2, m3) = (0, 1, 1) the unit
(ρ− 1)(ρ− a) = ρ2 − (a + 1)ρ + a cannot be a square too for a ≡ 0 mod 2:
consider α ∈ Z[ρ] with α2 = ρ2−(a+1)ρ+a; this implies for every choice of
a ∈ Z a contradiction concerning the coefficients of α2 and ρ2− (a+1)ρ+a
modulo 2. For a 6≡ 1, 7 mod 8 the considered unit can also not be a square
for the same reasons modulo 8. (Even for other choices of the parameter a
computations show that {ρ, ρ− 1, ρ− a} are fundamental.)

Acknowledgment: We would like to thank the referee for insightful
comments and suggestions.
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