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Schöpp3
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Abstract

We describe a method for constructing Jacobians of hyperelliptic
curves of genus g ≥ 2, defined over a number field, with a rational
point of order some (well-chosen) integer l ≥ g + 1; it is based on a
polynomial identity. We show that all hyperelliptic modular curves
X0(N) with N a prime number fit into this strategy, except for N =
37 in which case we give another explanation. Using this approach
we construct new families of genus 2 curves defined over Q, which
contain the modular curves X0(31) (and X0(22) as a by-product)
and X0(29), the Jacobians of which having a rational point of order
5 and 7 respectively. We also construct a new family of hyperelliptic
genus 3 curves defined over Q, which contains the modular curve
X0(41), the Jacobians of which having a rational point of order 10.

1. Introduction

Let A be an abelian variety of dimension g defined over a number field
K. Thanks to the theorem of Mordell-Weil, the set A(K) of K-rational
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points of A turns out to be a finitely generated abelian group isomorphic to
Zr ⊕ A(K)tors, where A(K)tors is the group of K-rational torsion points of
A. It is interesting to have a complete description of the finite groups that
occur as rational torsion groups of an abelian variety defined over a number
field. To date, this description has been essentially achieved only in the case
g = 1 and K = Q by Mazur [1977], (see also [Kubert, 1976]), and in the case
g = 1 and K a quadratic field by Kamienny [1986]. Moreover, in the case
of elliptic curves (g = 1), Merel [1996] has proved the uniform boundedness
conjecture, which asserts that, given an integer d ≥ 1, there exists a bound
B(d) depending only on d, such that for any elliptic curve E defined on a
number field K of degree d, the inequality Card E(K)tors ≤ B(d) holds.
The version of this conjecture for abelian varieties of dimension g ≥ 2 is
still open; the only known results in this direction are that some groups
occur as rational torsion groups of (families of) Jacobians of hyperelliptic
curves of genus g ≥ 2 [Flynn, 1990, 1991; Leprévost, 1992, 1994, 1996, 1997].

In this article, for some integers l, g such that l ≥ g + 1 ≥ 2, we explicit
in section 2 an equation involving four monic polynomials Q1, Q2, F1 and
F2, defined over a field K of characteristic zero and whose degrees depend
on l and g. If this equation is satisfied, and if F1F2 has no multiple roots,
we show that the Jacobian of the genus g hyperelliptic curve of equation
y2 = F1(x)F2(x) has a K-rational torsion point of order dividing l. We also
provide a variant of this approach using a quadratic extension of the field
K. These methods are different from those of [Leprévost, 1992, 1994, 1996,
1997]. In section 3, we focus on hyperelliptic modular curves X0(N) with N
a prime number (N = 23, 29, 31, 37, 41, 47, 59, 71). We recall that, in partic-
ular for those eight values of N , the Q-rational torsion group of its Jacobian
J0(N) is a cyclic group of order l = N−1

gcd(N−1,12)
. We show that these curves,

except X0(37) for which there is another explanation, fit into the strategy
described in section 2. Our intention in this article is to generalize some of
these modular curves in the following sense. In sections 4, 5 and 6, we show
that the polynomial equation previously mentioned has families of solutions
in the case g = 2 and l = 5 or l = 7, or g = 3 and l = 10, and we construct
families of genus g hyperelliptic curves defined over Q, whose Jacobians have
a rational point of order l. These families are different from those obtained
in [Boxall-Grant-Leprévost, 2001] in the case g = 2 and l = 5. We further
recover the curves X0(22), X0(29), X0(31) and X0(41) as specialisations of
these new families. The limitation of the method is essentially a computing
power problem, and we were not able to push the computations further in
order to construct a family going through the other modular curves studied
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in section 3. It would have been interesting, for instance, to construct a fam-
ily of genus 2 curves defined over Q, whose Jacobians have a rational point
of order 11, and which contains the modular curve X0(23). Such a result
would in particular be relevant to the problem of finding new examples of
imaginary and real quadratic fields with a class group having an 11-rank
≥ 3 and ≥ 2 respectively. (For examples see [Leprévost, 1993].)

We made extensive use of the computer algebra systems KANT [2003],
Magma [2003] and Maple [2003] for the computations done in this article.

Aknowledgements: The authors want to thank Josep González for useful
discussions.

2. A polynomial equation related to torsion points of
Jacobians of hyperelliptic curves

Let K be a field of characteristic 0, g and l integers, such that l ≥ g+1 ≥ 2.
We first prove the following theorem:

Theorem 2.1: Let P, Q and F be monic polynomials with coefficients in
K, of degrees respectively l, l − (g + 1) and 2g + 2. Assume that F has no
multiple roots. Suppose that the following polynomial equation is satisfied:

P 2(x)−Q2(x)F (x) = λ ∈ K∗.

Then the curve of equation y2 = F (x) is hyperelliptic of genus g, and its
Jacobian has a K-rational point of order dividing l and different from 1. In
particular, if l is prime, this point is exactly of order l.

Note first that if the polynomial equation is satisfied, then P and Q have
no common roots.

It is obvious that, if F is of degree 2g + 2 without multiple roots, then the
curve C of equation y2 = F (x) is hyperelliptic and of genus g. Now, because
F is a monic polynomial, the points +∞ and −∞ are rational over K. (This
is satisfied if the leading coefficient of F is a square in K as well. This latter
case is not more general than supposing F monic in the theorem.) It follows
that the group J(C)(K) of K-rational points of the Jacobian of C contains
the class of the rational divisor D∞ = (+∞) − (−∞). If the polynomial
equation P 2(x) − Q2(x)F (x) = λ is satisfied for some λ ∈ K∗, it implies
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that the divisor of the function ϕ(x, y) = P (x) − yQ(x) is (ϕ) = lD∞.
This shows that the class of the K-rational divisor D∞ defines an element
of J(C)(K) of order dividing l. Furthermore, this point cannot be of order
one, else C would be birational to P1, and hence of genus 0, which is excluded
(g ≥ 1). This shows in particular, that if l is a prime number, then the order
of the point defined by the class of D∞ is equal to l.

The following theorem describes a method for the construction of poly-
nomials P, Q and F satisfying the equation of Theorem 2.1. Its proof is
straightforward.

Theorem 2.2: Let Q1, Q2, F1, F2 be four monic polynomials ∈ K[x], of
degrees q1, q2, f1, f2 respectively. Suppose that 2q1 + f1 = 2q2 + f2 = l, that
f1 + f2 = 2g + 2, and that these polynomials satisfy the following equation:

Q2
1(x)F1(x)−Q2

2(x)F2(x) = 2t,

for some t ∈ K∗. Then the polynomials P (x) = Q2
1(x)F1(x) − t, Q(x) =

Q1(x)Q2(x) and F (x) = F1(x)F2(x) are of degrees l, l− (g + 1), and 2g + 2
respectively, and satisfy the following equation:

P 2(x)−Q2(x)F (x) = t2 ∈ K∗.

Note further that P and Q have no common roots. If F has no multiple
roots, the conditions of Theorem 2.1 are satisfied, and the Jacobian of the
genus g hyperelliptic curve of equation y2 = F (x) has a K-rational point
of order dividing l. The case where l has the same parity as g + 1, and
f1 = f2 = g + 1, where q1 = q2 = l−(g+1)

2
is of special interest.

The method described above has the following variant, whose proof is straight-
forward as well:

Theorem 2.3: Let l ≥ g + 1 ≥ 2 be integers such that l has the same
parity as g + 1. Let d be an element of K \ K2, and Q1 and F1 be two

monic polynomials ∈ K(
√

d)[x], not defined over K, and of degrees l−(g+1)
2

and g + 1 respectively. Let Q1 and F1 denote their conjugates with respect
to
√

d 7−→ −
√

d. Suppose that the following equation is satisfied:

Q2
1(x)F1(x)−Q1

2
(x)F1(x) = t− t = 2u

√
d,
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where t = u
√

d for some u ∈ K∗. Then the polynomials P (x) = Q2
1(x)F1(x)−

t, Q(x) = Q1(x)Q1(x), and F (x) = F1(x)F1(x) are elements of K[x], of de-
grees l, l−(g+1) and 2g+2 respectively, and satisfy the following equation:

P 2(x)−Q2(x)F (x) = t2 = u2d ∈ K∗.

3. Hyperelliptic modular curves X0(N) with N prime

Let N ≥ 1 be an integer. Then the group

Γ0(N) = {
(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N}

acts on the upper half-plane H = {z ∈ C : Im(z) > 0}. Let H∗ =
H ∪ Q ∪ {i∞}. Then X0(N) is the modular curve defined over Q which
corresponds to Γ0(N), i.-e. X0(N)(C) ' H∗/ Γ0(N). These curves have a
rational equation over Q, and classify pairs (E, E ′) of generalized elliptic
curves together with a cyclic isogeny E −→ E ′ of degree N . Let J0(N) be
the Jacobian of X0(N).

If N is prime, a now classical result due to Ogg [1973] asserts that J0(N)tors(Q)
is generated by the class of the divisor (0)−(∞), where 0 and∞ are the two
rational cusps, and that the order of this group is equal to l = N−1

gcd(N−1,12)
.

More precisely, for τ ∈ H, one defines the functions

∆(τ) = q
∏
i≥1

(1− qi)24 and ∆N(τ) = ∆(Nτ) = qN
∏
i≥1

(1− qiN)24,

where q = exp (2iπτ). Then the function ϕN = ( ∆
∆N

)
1

gcd(N−1,12) is a modular
form for Γ0(N), whose divisor is precisely l((0)− (∞)).

On the other hand, Ogg [1974] has also determined the 19 values of N for
which X0(N) is hyperelliptic of genus g ≥ 2.

We focus here on the case where both properties are satisfied, namely N is
a prime such that X0(N) is hyperelliptic of genus g ≥ 2. The corresponding
values for N are 23, 29, 31, 37 (g = 2), 41 (g = 3), 47 (g = 4), 59 (g = 5),
and 71 (g = 6).

For all these values, except for N = 37, we recall in the following table the
equations of X0(N) of the form y2 = fN(x) obtained mainly from [Gonzàlez
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Rovira, 1991] (see also [Hibino-Murabayashi, 1997] for other related ques-
tions). It turns out that, for the values N considered in this table, fN(x)
admits a factorisation

fN(x) = F1,N(x)F2,N(x)

over Q or over a quadratic number field which is specified in the table. We
show that these curves fit into the strategy described in section 2: there are
explicit polynomials Q1,N and Q2,N in Q[x], such that an equation

Q2
1,NF1,N −Q2

2,NF2,N = 2t

is satisfied for some t ∈ Q∗, or there is an explicit polynomial Q1,N defined

over Q(
√

d) for some d ∈ Q \Q2, such that an equation

Q2
1,NF1,N −Q1,N

2
F1,N = t− t = 2u

√
d,

is satisfied for some u ∈ Q∗. We provide in this table the equations for
these polynomials and the values 2t or t− t. In the latter case, we keep the
notations Q2,N = Q1,N , and F2,N = F1,N . In other words, one can express
the modular function ϕN as a function of the polynomials Q1 and Q2.

The remaining case N = 37 is different. An equation of X0(37) is [Gonzàlez
Rovira, 1991]:

y2 = f37(x) = x6 − 4x5 − 40x4 + 348x3 − 1072x2 + 1532x− 860.

Computations show that the divisor of the function

2ϕ37 = y + A3(x) = y + x3 − 2x2 − 22x + 56

is equal to
(ϕ37) = 3((3, 1)− (+∞)).

Indeed, the following equation holds:

f37 − A2
3 = 2237(x− 3)3.

The cusp (0) corresponds to the point (3, 1) on the equation of the curve, and
the cusp (∞) to the point +∞. The explanation of this different behaviour
comes essentially from the fact that the hyperelliptic involution is not the
Atkin-Lehner involution in the case N = 37 (see [Lehner-Newman, 1964]).
Actually, Ogg has proved (see [Ogg, 1974], p. 450) that N = 37 is the only
case where X0(N) is hyperelliptic and its hyperelliptic involution does not
belong to the subgroup of Aut(X0(N)) defined by automorphisms of H.
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g N l fN(x) = F1,N(x)F2,N(x), Q1,N(x), Q2,N(x) and Q2
1,NF1,N −Q2

2,NF2,N

F1,23(x) = x3 − x + 1
F2,23(x) = x3 − 8x2 + 3x− 7

2 23 11 Q1,23(x) = x4 − 17x3 + 91x2 − 143x− 40
Q2,23(x) = x4 − 13x3 + 45x2 − 9x− 82
Q2

1,23F1,23 −Q2
2,23F2,23 = 22233

F1,29(x) = x3 + (1 +
√

29)x2 + (11+3
√

29
2

)x + 5 +
√

29

F2,29(x) = x3 + (1−
√

29)x2 + (11−3
√

29
2

)x + 5−
√

29

2 29 7 Q1,29(x) = x2 − (7+
√

29
2

)x− (1−3
√

29
2

)

Q2,29(x) = x2 − (7−
√

29
2

)x− (1+3
√

29
2

)

Q2
1,29F1,29 −Q2

2,29F2,29 = 2229
√

29

F1,31(x) = x3 − 17x− 27
F2,31(x) = x3 + 4x2 + 3x + 1

2 31 5 Q1,31(x) = x− 2
Q2,31(x) = x− 4
Q2

1,31F1,31 −Q2
2,31F2,31 = −2231

F1,41(x) = x4 + 2x3 − (6−
√

41)x2 − (21− 3
√

41)x− (31− 5
√

41
2

)

F2,41(x) = x4 + 2x3 − (6 +
√

41)x2 − (21 + 3
√

41)x− (31 + 5
√

41
2

)

3 41 10 Q1,41(x) = x3 − 4x2 − (5+
√

41
2

)x + 29+3
√

41
2

Q2,41(x) = x3 − 4x2 − (5−
√

41
2

)x + 29−3
√

41
2

Q2
1,41F1,41 −Q2

2,41F2,41 = 2241
√

41

F1,47(x) = x5 − x4 + x3 + x2 − 2x + 1
F2,47(x) = x5 − 5x4 + 5x3 − 15x2 + 6x− 11
Q1,47(x) = x9 − 17x8 + 112x7 − 355x6 + 546x5

4 47 23 −388x4 + 149x3 + 292x2 − 740x + 36
Q2,47(x) = x9 − 15x8 + 84x7 − 207x6 + 172x5

+120x4 − 283x3 + 266x2 − 66x− 194
Q2

1,47F1,47 −Q2
2,47F2,47 = 22473

F1,59(x) = x3 + 2x2 + 1
F2,59(x) = x9 + 2x8 − 4x7 − 21x6 − 44x5 − 60x4 − 61x3 − 46x2

−24x− 11
5 59 29 Q1,59(x) = x13 − 7x12 + 2x11 + 70x10 − 68x9 − 276x8 + 161x7

+644x6 + 210x5 − 808x4 − 727x3 − 202x2 + 332x + 720
Q2,59(x) = x10 − 7x9 + 4x8 + 63x7 − 99x6 − 166x5

+306x4 + 183x3 − 194x2 − 312x + 166
Q2

1,59F1,59 −Q2
2,59F2,59 = 22593

F1,71(x) = x7 + 4x6 + 5x5 + x4 − 3x3 − 2x2 + 1
F2,71(x) = x7 − 7x5 − 11x4 + 5x3 + 18x2 + 4x− 11
Q1,71(x) = x14 − 8x13 + 7x12 + 82x11 − 132x10 − 414x9 + 610x8

6 71 35 +1533x7 − 1366x6 − 3829x5 + 1313x4 + 5207xx + 338x2

−3100x− 612
Q2,71(x) = x14 − 6x13 − 5x12 + 76x11 − 8x10 − 408x9 + 2x8 + 1231x7

+484x6 − 2049x5 − 1575x4 + 1185x3 + 1570x2 + 500x− 310
Q2

1,71F1,71 −Q2
2,71F2,71 = 22713
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In the next two sections, we focus on the case of genus 2 curves (which are
automatically hyperelliptic) whose Jacobians have a rational point of prime
order l = 5 or l = 7.

4. Two new families of genus 2 curves whose Jacobians
have a rational point of order 5

Using the method described in the theorems of section 2, we construct here
two new families of genus 2 curves defined over Q, whose Jacobians have a
rational point of order 5. With the notations of Theorem 2.2, the conditions
2q1 + f1 = 2q2 + f2 = 5 and f1 + f2 = 6 imply that (f1, f2) = (1, 5)
or (3, 3). We do not suppose here a priori that the genus 2 curve we are
looking for has a rational Weierstrass point, because this case has been
treated extensively in [Boxall-Grant-Leprévost, 2001]. As a consequence,
we consider here (f1, f2) = (3, 3) and (q1, q2) = (1, 1). More precisely, we
first show the following result:

Theorem 4.1: Let a and b be two parameters. The curve Ca,b,5 defined by
the equation

y2 = (x3 + (a− 2)x2 + (2b− 2a + 1)x + a− 3b)(x3 + ax2 + 2bx + b)

is generically of genus 2 and its Jacobian has a Q(a, b)-rational point of
order 5. Furthermore, this family contains the modular curves X0(22) and
X0(31).

Let Q1 = x − u1 and Q2 = x − u2 be elements of Q[x], and let F1 and F2

be two monic polynomials of degree 3 defined over Q. Suppose that these
polynomials satisfy the equation

Q2
1F1 −Q2

2F2 = 2t ∈ Q∗.

One may first suppose u1 = 0 (change x into x + u1), and, because u2 6= 0
(otherwise x2 would divide the left hand side of the previous equation,
what is impossible), one may further suppose that u2 = 1 (change x into
u2x). It is easy to check that the polynomials we are looking for are F1 =
x3 + (a− 2)x2 + (2b− 2a + 1)x + a− 3b and F2 = x3 + ax2 + 2bx + b. They
satisfy the equation:

x2F1 − (x− 1)2F2 = −b.
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One easily checks that the curve of equation y2 = F1F2 defines generically a
genus 2 curve over Q(a, b), whose Jacobian has a rational point of order 5,
thanks to Theorems 2.1 and 2.2. The family Ca,b,5 contains the curve X0(31),
which corresponds to the choice of the parameters (a, b) = (5, 31

8
). Finally,

one shows that the genus 2 curve X0(22) (see [Gonzàlez Rovira, 1991] for an
equation of this curve) corresponds to the choice of the parameters (a, b) =
(−7

2
, 11

8
).

Using Theorem 2.3, one can construct another family: a priori Q1 = x −
(v + w

√
d), but again, we can assume that v = 0 and w = 1 (since w 6= 0),

so Q1 = x−
√

d. The equation Q2
1F1−Q1

2
F1 = 2u

√
d for a non-zero u yields

F1 = (x3 + ax2 + bx + ad) + 2(x2 + ax + b− d)
√

d,

and with these notations

Q2
1F1 −Q1

2
F1 = 4d(b− d)

√
d,

hence:

F (x) = F1(x)F1(x) = x6 + 2ax5 + (a2 + 2b− 4d)x4 − 2a(3d− b)x3

+(b2 + 8d2 − 8bd− 2a2d)x2 + 2ad(4d− 3b)x
−d(4b2 + 4d2 − 8bd− a2d).

There are now two cases to consider. First, if a = 0, then one finds the curve
Cb,d,0,5 with equation

y2 = x6 + 2(b− 2d)x4 + (8d2 − 8db + b2)x2 − 4d(b− d)2.

Obviously, its Jacobian is isogeneous to a product of elliptic curves. We
do not further consider this family (see however [Howe-Leprévost-Poonen,
2000] for some results with split Jacobians).

Now, if a 6= 0, one can assume that a = 1 (change x into ax, b into ba2, and
d into da2), and one obtains the following result:

Theorem 4.2: Let b be a parameter and d an element of Q\Q2. The curve
Cb,d,1,5 defined by the equation

y2 = x6 + 2x5 + (2b− 4d + 1)x4 + 2(b− 3d)x3

+(b2 + 8d2 − 8bd− 2d)x2 − 2d(3b− 4d)x− d(4b2 − 8bd + 4d2 − d)
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is generically of genus 2 and its Jacobian has a Q(b, d)-rational point of
order 5.

The curves Ca,b,5 and Cb,d,1,5 define families of genus 2 curves in the sense
that their Igusa invariants [Igusa, 1960] are non-constant, as one easily
checks. As a consequence, the specialisation of the parameters in these fam-
ilies of curves provides infinitely many genus 2 curves defined over Q, whose
Jacobians have a Q-rational point of order 5. Finally, one proves, with the
techniques described in [Leprévost, 1995], that the Jacobians of these fam-
ilies are generically absolutely irreducible.

5. Two new families of genus 2 curves whose Jacobians
have a rational point of order 7

Again, using the method described in the theorems of section 2, we construct
here two new families of genus 2 curves defined over Q, whose Jacobians
have a rational point of order 7. With the notations of Theorem 2.2, the con-
ditions 2q1+f1 = 2q2+f2 = 7 and f1+f2 = 6 implies that (f1, f2) = (1, 5) or
(3, 3). The first case corresponds to the situation where the genus 2 curve
has a rational Weierstrass point. The methods of [Leprévost, 1991a] and
[Leprévost, 1991b] would apply, and we prefer here to consider the latter
case, where (f1, f2) = (3, 3) and (q1, q2) = (2, 2).

One first applies Theorems 2.1 and 2.2, and one may assume that Q1 =
x2 + q0 and Q2 = x2 + x + p0. Let D0, a2, a1, a0, b2, b1 and b0 be as follows:

D0 = 3 q0
2 − 6 p0 q0 + q0 + 3 p0

2 − 2 p0 ,
2D0a2 = 2 q0

3 − 6 p0 q0
2 + 9 q0

2 + 3 q0 + 6 p0
2q0 − 24 p0 q0 − 8 p0

+15 p0
2 − 2 p0

3,
D0a1 = p0 (3 q0

2 − 6 p0 q0 + 2 p0 − 3 q0 − 2 + 3 p0
2) ,

−2D0a0 = q0
4 + 3 q0

3 − 6 p0 q0
3 + 3 q0

2 − 12 p0 q0
2 + 12 p0

2q0
2 + q0

+21 p0
2q0 − 10 p0

3q0 − 6 p0 q0 + 5 p0
2 + 3 p0

4 − 12 p0
3,

2D0b2 = 2 q0
3 − 6 p0 q0

2 − 3 q0
2 − q0 + 6 p0

2q0 + 3 p0
2 − 2 p0

3,
D0b1 = −9 p0 q0

2 + 6 p0
2q0 − 3 p0 q0 − p0

3 + 4 q0
3 + 2 q0

2,
2D0b0 = −2 q0

2 + 3 p0
2q0 − 3 q0

3 + 12 p0
2q0

2 − 6 p0
3q0 − 10 p0 q0

3

+3 q0
4 + p0

4.

With these notations, one shows the following result:
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Theorem 5.1: The equation y2 = (x3+a2x
2+a1x+a0)(x

3+b2x
2+b1x+b0)

defines generically a genus 2 curve Cp0,q0,7 over Q(p0, q0) whose Jacobian has
a rational point of order 7.

Using Theorem 2.3, one can construct other families. Let Q1 = x2 + (u1 +
v1

√
d)x + u + v0

√
d. One may first assume that u1 = 0 (the changement

of x into x − u1

2
does affect Q1 in a compatible way), and that (v0, v1) =

(1, 0); (0, 1); (−1, 1). The case (v0, v1) = (1, 0) does not lead to any solution.
The case (v0, v1) = (0, 1) leads to the curve Ĉu,d,7 defined by the equation

y2 = x2
(
x2 +

ud

u + d
+ u + d

)2

− 4d
(
x2 +

ud

u + d

)2

.

Obviously, its Jacobian is isogeneous to a product of elliptic curves, and we
do not further consider this family here. In the last case (v0, v1) = (−1, 1)
computations show that

Q2
1F1 −Q1

2
F1 =

4(u + 1)3d
√

d

u− 3 + d

is satisfied with

F1 = x3 + 3u−1+d
u−3+d

x2 + u2−3u+3ud−2d+d2

u−3+d
x + 3u2+3ud−d2+6d−u

u−3+d

+2(x2 + 2 u+1
u−3+d

x + ud−3u+1
u−3+d

)
√

d.

It is then easy to prove the following result:

Theorem 5.2: Let u be a parameter, and d an element of Q \ Q2. The
curve C̃u,d,7 defined by the equation

y2 =
(
x3 + 3u−1+d

u−3+d
x2 + u2−3u+3ud−2d+d2

u−3+d
x + 3u2+3ud−d2+6d−u

u−3+d

)2

−4d
(
x2 + 2 u+1

u−3+d
x + ud−3u+1

u−3+d

)2

is generically of genus 2 and its Jacobian has a Q(u, d)-rational point of
order 7. Moreover this family contains the modular curve X0(29).

One recovers the curve X0(29) with the choice (u, d) = (−57
25

, 116
25

) of the

parameters. Again, the Igusa invariants of the curves Cp0,q0,7 and C̃u,d,7 are
non-constant, and the Jacobians of these families of genus 2 curves are
generically absolutely irreducible. The specialisation of the parameters in
these families of curves provides infinitely many genus 2 curves defined over
Q, whose Jacobians have a Q-rational point of order 7.
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6. A new family of hyperelliptic genus 3 curves whose
Jacobians have a rational point of order 10

The method used in this last section is similar to what has been done in the
two previous sections, and we only sketch the proof of Theorem 6.1 below.
Let

Q1 = x3 + x2 + q(x + q − t)−
√

qtx,
F1 = x4 + (t− q + 2)x3 + (1 + 2t)x2 + (q + t)x + q(t− q2 + 2qt + q − t2)

+2(x2 + (t + 1− q)x + t)
√

qt.

Then the following equation holds:

Q2
1F1 −Q1

2
F1 = 4qt(q − t)2

√
qt.

With these notations, we obtain the following theorem:

Theorem 6.1: Let q, t be parameters such that qt is an element of Q \Q2.
The curve Cq,t,10 defined by the equation

y2 =
(
x4 + (t− q + 2)x3 + (1 + 2t)x2 + (q + t)x + q(t− q2 + 2qt + q − t2)

)2

−4qt
(
x2 + (t + 1− q)x + t

)2

is generically of genus 3, and its Jacobian has a Q(q, t)-rational point of
order 10. Moreover this family contains the curve X0(41).

One easily checks, that the order of the class of the divisor (+∞)− (−∞) is
different from 2 and 5, hence is equal to 10. The curve X0(41) corresponds
to the choice (q, t) = ( 1

50
, 41

50
) of the parameters. Because the genus is 3, the

Igusa invariants cannot be used in this case, but the techniques described
in [Leprévost, 1992, 1994, 1996, 1997] apply and show, that the curve Cq,t,10

is not isotrivial. The specialisation of the parameters in this curve provides
infinitely many hyperelliptic genus 3 curves defined over Q, whose Jacobians
have a Q-rational point of order 10.

The authors thank the FNR (project FNR/04/MA6/11) for their support.
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