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Abstract. We present algorithms for the computation of extreme binary
Humbert forms in real quadratic number fields. With these algorithms we
are able to compute extreme Humbert forms for the number fields Q(

√
13)

and Q(
√

17). Finally we compute the Hermite-Humbert constant for the

number field Q(
√

13).

1. Introduction

A new invariant of number fields, called Hermite-Humbert constant, was
introduced by P. Humbert in 1940. This constant is an analogue to the
Hermite constant for Q. In [H] Humbert describes a generalization of the
reduction theory for quadratic forms over Z where he considers totally pos-
itive forms, called Humbert forms, with integral entries in a given number
field K. He deduces an analogous reduction theory and the existence of the
Hermite-Humbert constant.
In this work we compute extreme binary Humbert forms for the number
fields Q(

√
13) and Q(

√
17) and the Hermite-Humbert constant γ

K,2
for

K = Q(
√

13). In [BCIO] it is shown that finding Hermite-Humbert con-
stants of real quadratic number fields is tantamount to looking for extreme
Humbert forms. Their existence is proved in [Ica]. Following the prece-
dence of Voronöı a characterization of extreme Humbert forms is given in
[C] by introducing two properties of extreme Humbert forms, namely per-
fection and eutacticity. With these properties we are able to make a unique
characterization of extreme Humbert forms: a Humbert form is extreme if
and only if it is both, perfect and eutactic.

2. The theoretical background

Let P denote the set of positive real binary Humbert forms, i.e. S =
(S1, S2) ∈ P with positive definite 2 × 2 real matrices S1 and S2. If K
denotes a real quadratic number field and OK its maximal order, we denote
with S[x] the product xtS1x ·x′tS2x

′ for any x ∈ O2
K , where x′ denotes the

conjugate vector of x and we let detS be the product of the determinants
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det S1 and detS2. In the same way U ′ denotes a matrix with conjugated
entries of a matrix U ∈ K2×2. Let

m(S) := min {S[x] : 0 6= x ∈ O2
K}

denote the minimum of a given Humbert form S, then

M(S) := {[x] ∈ O2
K | S[x] = m(S)}

denotes a set of equivalence classes

[x] := {y ∈ O2
K | y = εx, ε ∈ O×

K}
where the elements of M(S), respectively their representatives, are called
minimal vectors of S. To avoid superfluous notation we denote the elements
[x] of M(S) only with x. If a tuple U := (U1, U2) ∈ GL(2,OK)2 is given we
can make unimodular transformations from a Humbert form S to another
denoted by

S[U ] := (S[U1], S[U2]) := (U t
1S1U1, U

t
2S2U

t
2).

By scaling we mean multiplication of a given Humbert form S = (S1, S2)
with an element λ = (λ1, λ2) ∈ (R>0)2 to obtain another Humbert form

λS := (λ1S1, λ2S2).

We note that for a given Humbert form S the set M(S) is finite which is
shown in [Ica]. The following theorem is due to Humbert. He proved the
existence of Hermite-Humbert constants:

Theorem 1. For any S ∈ P and any real quadratic number field K of

discriminant dK there is a constant C ∈ R>0 with C < 210|dK |2 such that

(1) S[x] ≤ C
√

detS ∀x ∈M(S).

There are better upper bounds for C, see [Co2] and [Ica]. We use the
estimate C ≤ 1

2 |dK | from [Co2]. With theorem 1 we are able to define a

map from P to R>0 in the following way.

Definition & Proposition 2. Let S ∈ P and

γ
K

: P −→ R>0, γ
K

(S) =
m(S)√
detS

,

then γ
K

is invariant under unimodular transformations and scaling.

Now we are able to define the Hermite-Humbert constant as

(2) γ
K,2 = sup

S∈P
γ

K
(S).

Any Humbert form S for which equality holds in (2) is called critical. The
existence of such forms is shown in [Ica]. The value γ

K
(S) of a critical

Humbert form S is a global maximum of γ
K

. Forms for which γ
K

achieves
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a local maximum are called extreme. For characterizing extreme forms we
introduce two properties: perfection and eutacticity. If S = (S1, S2) ∈ P
and x ∈M(S), then

(
xxt

S1[x]
,

x′x′t

S2[x′]

)

is a semi-positive definite Humbert form. The set of such forms of a given
S ∈ P will be denoted with XS . Now perfection means

dim
∑

X∈XS

RX = 5

and eutacticity means that there is a representation

S−1 = (S−1
1 , S−1

2 ) =
∑

X∈XS

ρXX

with ρX ∈ R>0 for all X ∈ XS .

Definition 3. If (S1, S2) ∈ (R2×2)2 with

Si =

(
ai bi

bi ci

)

(i = 1, 2)

then we define the map

Φ : (R2×2)2 −→ R6, (S1, S2) 7−→ (a1, b1, c1, a2, b2, c2)
t.

Now perfection and eutacticity become

dim
∑

X∈XS

RΦ(X) = 5 and Φ(S−1) =
∑

X∈XS

ρXΦ(X).

This means a Humbert form S is eutactic if Φ(S−1) is in the interior of
the linear convex hull of the points Φ(X) where X ∈ XS . The following
theorem of [C] characterizes extreme forms:

Theorem 4. A Humbert form is extreme if and only if it is both, eutactic

and perfect. An extreme Humbert form of a real quadratic number field has

at least 5 minimal vectors.

Now we need the definition of being equivalent for two Humbert forms S
und T :

Definition 5. Two Humbert forms S and T are called equivalent, if there

is a tupel U := (U1, U2) ∈ GL(2,OK)2 with U2 = U ′
1 and

T = S[U ]

or there is λ = (λ1, λ2) ∈ (R>0)2 such that S = λT .
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In [C] is shown that there is only a finite number of extreme forms up to
equivalence. This suggests to look for a suitable set of representatives of
extreme Humbert forms. With the next lemmata we are able to determine
such a set and a finite set M which contains all minimal vectors for each
element of it. Before we start we need one more definition:

Definition 6. Two elements x, y ∈ O2
K are called a unimodular pair if

they are a OK-basis of O2
K, i.e. O2

K = OKx⊕OKy.

With ε0 > 1 we denote the fundamental unit of the real quadratic number
field K. The following lemma is proved in [BCIO]:

Lemma 7. Let hK = 1. If any extreme Humbert form has a unimodular

pair of minimal vectors then it is equivalent to a form

(3) S =

((
1 b1

b1 c

)

,

(
1 b2

b2 c−1

))

with ε−1
0
≤ c < ε0 . The standard basis vectors e1 and e2 are contained in

the set M(S) and for any other minimal vector x = (x1, x2)
t ∈ O2

k we have

|NK/Q(x1)| ≤ γ
K,2

, |NK/Q(x2)| ≤ γ
K,2

and

|x(1)
2 | <

√
ε0γK,2

|x(2)
1 |

, |x(2)
2 | <

√
ε0γK,2

|x(1)
1 |

.

We denote the obtained set of such representatives with S. For a restriction
of the finite set M of minimal vectors for each element of S we can make
use of the following lemma (see [BCIO]):

Lemma 8. (1) Let S = (S1, S2) ∈ P with

Si =

(
ai bi

bi ci

)

for i = 1, 2 and u = (u1, u2)
t ∈ O2

K . Then

|NK/Q(u1)| ≤
√

c1c2S[u]
m(S)2 γ

K,2 ,

|NK/Q(u2)| ≤
√

a1a2S[u]
m(S)2

γ
K,2

,

|u(1)
1 u

(2)
2 | ≤

√
a2c1S[u]
m(S)2

γ
K,2

,

|u(2)
1 u

(1)
2 | ≤

√
a1c2S[u]
m(S)2

γ
K,2

.

(2) Let u = (u1, u2)
t, v = (v1, v2)

t ∈ O2
K be minimal vectors of S with

v /∈ O×
Ku and

U =

(
u1 u2

v1 v2

)

,
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then

|NK/Q(det U)| ≤ γ
K,2

.

By Theorem 4 we know every extreme Humbert form has at least 5 minimal
vectors. Now we are able to compute all possible extreme forms as follows if
we assume every Humbert form has a unimodular pair of minimal vectors:

(1) determine the finite set M of all possible minimal vectors for each
element of S

(2) for any 3-set T = {u1, u2, u3} ⊆ M\{e1, e2} we have to solve poly-
nomial equations S[ui] = 1 in the unknowns of S ∈ S where

S =

((
1 b1

b1 c

)

,

(
1 b2

b2 c−1

))

and i = 1, 2, 3
(3) finally we have to test whether the obtained Humbert forms are

eutactic and perfect.

A last step should be done: if we have two perfect Humbert forms S and
T we need an algorithm which decides whether T and S are equivalent.
We consider two 3-sets W = {w1, w2, w3} ⊆ M(T ) and V = {v1, v2, v3} ⊆
M(S) of minimal vectors. If S and T are unimodular equivalent then there
is a matrix U ∈ GL(2,OK) with

(4) Uwi = εivi

for i = 1, 2, 3 and suitable units εi ∈ O×
K . Now two perfect Humbert forms

S and T are equivalent if and only if there exists a matrix U ∈ GL(2,OK)
with U ·M(T ) = M(S).

3. The algorithms

In this section K always denotes a real quadratic number field with hK = 1
and ε0 > 1 the fundamental unit of the maximal order OK .

Next we want to develop an algorithm for computing extreme Humbert
forms. The main algorithm splits in several subalgorithms. The first sub-
algorithm for computing the set M and all 3-sets is algorithm 10. After
computing all 3-sets of M we have to compute real solutions of the poly-
nomial equations obtained by all triples of M to construct Humbert forms.
Finally we compute minimal vectors with algorithm 14 and if necessary
eutactic coefficients.
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Algorithm 9 (Main Algorithm).
Input: The maximal order OK of a real quadratic number field K
Output: A set of all eutactic and perfect Humbert forms of K

up to equivalence having a unimodular pair of
minimal vectors

• T ← All 3-sets of M
• H1 ← set of Humbert forms obtained by the real solutions of the

polynomial equations
• H2 ← {S = (S1, S2) ∈ H1 | m(S) = 1}
• H3 ←

{
(h1, h2) | h2 ∈ H2, h1 = minimal vectors of

h2 and |h1| > 4
}

• H4 ← {h = (h1, h2) ∈ H3 | h2 is perfect and eutactic }
• H5 ← set of non-equivalent Humbert forms
• Return H4

3.1. Computing of all 3-sets of M . In this section we describe the
algorithm to compute all suitable 3-sets of M . We make use of the results
of lemma 7 and lemma 8. Note that we assume every Humbert form has
got a unimodular pair of minimal vectors.

Algorithm 10 (3-sets of M ).
Input: An integral basis 1, ω of the maximal order OK of a real quadratic

number field K, the fundamental unit ε0

Output: All suitable 3-sets of M

• M ← ∅, X,Y ← {[α] | α ∈ OK with 0 < |NK/Q(α)| ≤ dK

2 }

• For all x ∈ X do
For all y ∈ Y do

if ∃k ∈ Z with |
(
yεk

0

)(1)| <
√

ε0dK

x(2)2
and |

(
yεk

0

)(2)| <
√

ε0dK

x(1)2
then

M ←M ∪ {(x, yεk
0
)t}

• T ← set of all 3-sets of M

• S ← ∅

• For all A = {αi | αi ∈ O2
K , i = 1, 2, 3} ∈ T do

Ψ← {(αi, αj) ∈ GL(2,K) | i, j ∈ {1, 2, 3}}
If Ψ = ∅ or for any X ∈ Ψ there holds |NK/Q(det X)| > dK

2 then
S ← S ∪ {A}

Else
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For X = (αi, αj) ∈ Ψ (i, j ∈ {1, 2, 3}, i 6= j) do
α← A\{αi, αj}
If λ = (λ1, λ2)

t ∈ K2 exists with λ1λ2 = 0 where α = Xλ then
S ← S ∪ {A}

• Return T\S

3.2. Unimodular equivalent Humbert forms. Now we describe an
algorithm which decides whether two perfect Humbert forms S and T are
unimodular equivalent. Let A = {a1, a2, a3} ⊆ M(S) and let us assume
there holds

(5) λ2a2 = a1

with λ2 ∈ K. If λ2 = λ21
λ22

(λ22, λ21 ∈ OK , λ22 6= 0) with gcd(λ22, λ21) = 1

then a1 = λ21µ for some µ ∈ O2
K . Now we get

S[a1] = NK/Q(λ21)
2S[µ]

and we obtain |NK/Q(λ21)| = 1 = |NK/Q(λ22)|. Together this means

(6) λ2a2 = a1 ⇒ [a1] = [a2].

The same holds if we change the role of the ai (i = 1, 2, 3). If A =
{a1, a2, a3} ⊆M(S) and B = {b1, b2, b3} ⊆M(T ) then let us assume with-
ous loss of generality the first two element of A and B are K-linear indepen-
dent. Now we have a representation of the third element of each set with the
both first elements. It is easy to see that if a matrix U ∈ GL(2,OK) exists
with respect to (4) then for the matrices X := (a1, a2) and Y := (b1, b2)
there holds Y X−1 ∈ GL(2,OK). If we assume a U ∈ GL(2,OK) with
respect to (4) exists we have

U(a1, a2, a3) = (ε1b1, ε2b2, b3) (ε1, ε2 ∈ O×
K)

and with a3 = Xλ and b3 = Y µ we get λ = (λ1, λ2)
t, µ = (µ1, µ2)

t ∈ K2

with λ1, λ2, µ1, µ2 6= 0 because of (6). Now we obtain

ε1 =
µ1

λ1
and ε2 =

µ2

λ2
.

Finally we have to test whether ε1 and ε2 are units in OK and
(
(ε1b1, ε2b2)X

−1
)
M(S) = M(T ).

Algorithm 11 (Equivalence of Humbert Tupels).
Input: The sets M(S) and M(T ) of two perfect Humbert forms S and T

of a real quadratic number field K
Output: U ∈ GL(2,OK) with U ·M(S) = M(T ) if S and T are

unimodular equivalent, false otherwise
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• S ← ∅

• For all A = {ai | ai ∈ O2
K , i = 1, 2, 3} ⊆M(S)

For all B = {bi | bi ∈ O2
K , i = 1, 2, 3} ⊆M(T ) do

Ψ1 ← {(ai, aj) ∈ GL(2,K) | i, j ∈ {1, 2, 3}}
Ψ2 ← {(bi, bj) ∈ GL(2,K) | i, j ∈ {1, 2, 3}}
For X = (ai, aj) ∈ Ψ1 and Y = (bk, bl) ∈ Ψ2 do

If |NK/Q(det Y X−1)| = 1 then
a← A\{ai, aj}
b← B\{bk, bl}
λ← (λ1, λ2)

t ∈ K2 with λ1λ2 6= 0 where a = Xλ
µ← (µ1, µ2)

t ∈ K2 with µ1µ2 6= 0 where b = Y µ
ε1 ← µ1

λ1
,

ε2 ← µ2

λ2

If ε1, ε2 ∈ O×
K

If (ε1bk, ε2bl)X
−1 ·M(S) = M(T ) then

Return((ε1bk, ε2bl)X
−1)

• Return false

3.3. Computing minimal vectors. Next we want to compute minimal
vectors of a given S ∈ P. For doing this we need a constructive proof for
the finiteness of minimal vectors of a given Humbert form. The reason for
this is that we need the quantities which are involved in this proof for the
following algorithm which computes minimal vectors.

Lemma 12. Let S = (S1, S2) ∈ P, C ∈ R>0 and K be a real quadratic

number field. Then the set

(7) {x ∈ O2
K | S1[x] + S2[x

′] ≤ C}

is finite.

Proof. For all T ∈ R2×2 we denote with
∥
∥T
∥
∥ the value

min
x6=0

∥
∥Tx

∥
∥

2∥
∥x
∥
∥

2

∀ x ∈ R2.

If T is a regular matrix then we have

∥
∥T
∥
∥ = min

x6=0

∥
∥Tx

∥
∥

2∥
∥x
∥
∥

2

= min
y 6=0

∥
∥y
∥
∥

2∥
∥T−1y

∥
∥

2

=
∥
∥T−1

∥
∥−1

2
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with y = Tx. If we consider the Cholesky decompositions for Si = Rt
iRi

with Ri ∈ GL(2, R) (i = 1, 2), we get

(8) S1[x] =
∥
∥R1x

∥
∥2

2
≥
∥
∥R1

∥
∥2 ∥∥x

∥
∥2

2
=
∥
∥R−1

1

∥
∥
−2

2

∥
∥x
∥
∥2

2

and the same holds for S2[x
′]. For the computation of

∥
∥R−1

i

∥
∥

2
we need the

well known estimate

∥
∥Ri

∥
∥

2
≤
(∥
∥Ri

∥
∥
∞
∥
∥Ri

∥
∥

1

) 1
2

(i = 1, 2)

and now we get with (8)

S1[x] ≥
∥
∥R−1

1

∥
∥−2

2

∥
∥x
∥
∥2

2
≥
(∥
∥R−1

1

∥
∥
∞
∥
∥R−1

1

∥
∥

1

)−1 ∥
∥x
∥
∥2

2

where the same holds again for S2[x
′]. If m := mini=1,2

(∥
∥R−1

i

∥
∥
∞
∥
∥R−1

i

∥
∥

1

)−1

we get with x = (a, b)t ∈ O2
K

(9) m
(

a2 + a′2 + b2 + b′2
)

= m
(∥
∥x
∥
∥2

2
+
∥
∥x′∥∥2

2

)

≤ S1[x] + S2[x
′] ≤ C

and further

(10) a2 + a′2 = (a, a′)(a, a′)t =

((
1 1
ω ω′

)(
1 ω
1 ω′

))

︸ ︷︷ ︸

:=A

[(a1, a2)
t]

with a = a1+a2ω for an integral basis {1, ω} ofOK and a1, a2 ∈ Z. We know
the matrix A is a positive definite form in Z because the trace of integral
elements of a given maximal order are rational integral elements. With (9)
and (10) we obtain for any element z = (x1+x2ω, y2+y2ω)t (x1, x2, y1, y2 ∈
Z) of the set in (7) the condition

(11) A[(x1, x2)
t] ≤ C

m
and A[(y1, y2)

t] ≤ C

m

and the set of solutions of these inequalities is finite and so the set in (7)
is finite too. �

The next lemma motivates lemma 12.

Lemma 13. Let S = (S1, S2) ∈ P. Then there exists a constant α ∈
R>0 such that suitable representants of the elements of the set M(S) are

contained in the set

(12)
{
x ∈ O2

K | S1[x] + S2[x
′] ≤ α

}
.

With the last two lemmata we are able to compute minimal vectors of a
given S ∈ P.
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Algorithm 14 (Minimal Vectors).
Input: A Humbert form S = (S1, S2) ∈ P, the maximal order OK

with integral basis {1, ω}, α and m as in lemma 12 and
lemma 13

Output: The set J ⊆ O2
K of all minimal vectors of S

• I, J ← ∅
Si ← CSi (i = 1, 2) where Si =

(
ai bi

bi ci

)

and C = (max{a1, a2})−1

ε0 ← the fundamental unit ε of OK with ε > 1

m← mini=1,2

(∥
∥R−1

i

∥
∥
∞
∥
∥R−1

i

∥
∥

1

)−1

where Si = Rt
iRi means the Cholesky decomposition of Si (i = 1, 2)

A←
(

TrK/Q(1) TrK/Q(ω)
TrK/Q(ω) TrK/Q(ω2)

)

B ←
(

1 ln|ε2
0|

1 ln|ε′02|

)

• L←
{

(x1, x2)
t ∈ O2

K | xi = (xi1 + xi2ω), xi1, xi2 ∈ Z and

A[(xi1, xi2)
t] ≤ α

m , (i = 1, 2)
}

• µ← minx∈L S[x]
For x ∈ L do

If S[x] = µ then I ← I ∪ {x}

• For x ∈ I do
k ← n ∈ Z with 0 ≤ λ2 − n < 1 where

λ = (λ1, λ2)
t ∈ R2 with Bλ =

(
lnS1[x]
lnS2[x

′]

)

J ← J ∪ {xε−k}
• Return J

3.4. Computing eutactic coefficients. For computing eutactic coeffi-
cients we use well known algorithms of combinatorics. There exist classical
algorithms to compute barycentric coordinates based on linear program-
ming.
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4. Examples

Now we have the theoretical background and the algorithms for computing
extreme Humbert forms. The algorithms are implemented in KASH/KANT.
To continue we need the following lemma:

Lemma 15. Let S ∈ P and vi = (α, β)t ∈M(S) for 1 ≤ i ≤ s := |M(S)|,
and let vij, for 1 ≤ i 6= j ≤ s, be the determinants of the correspnding

pairs:

vij = det

(
αi αj

βi βj

)

.

Then, for a fixed prime ideal p, with corresponding valuation νp, we have:

If {i, j, k} ⊆ {1, . . . , s} is ordered so that νp(vij) ≥ max(νp(vik), νp(vjk)),
then

νp(vij) ≥ νp(vik) = νp(vjk).

In particular, if {i, j} is such that νp is maximal among all pairs {i, j}, we

have

νp(vij) ≥ νp(vik) = νp(vjk)

for k 6= i, j.

Proof. For a proof see [BCIO] �

In the case Q(
√

17) we are able to determine two extreme Humbert forms
if we assume every extreme Humbert form has got a unimodular pair of
minimal vectors. Of course these obtained extreme forms must not achieve
the Hermite-Humbert constant for Q(

√
17) but they are the first known

examples of extreme Humbert forms for this number field.

With Algorithm 10 we compute 80436 triples. Now we solve polynomial
equations to obtain Humbert forms and compute minimal vectors and if
necessary eutactic coefficients. We give an example with the triple

{(−5+
√

17
2
1

)

,

(−3+
√

17
2
−1

)

,

(
1
−1

)}

.

If we write a Humbert form S as

S =

((
1 b1

b1 c

)

,

(
1 b2

b2 c−1

))

we obtain for every minimal vector x = (x1, x2)
t ∈ O2

K polynomial equa-
tions in c, b1 and b2

S[x]− 1 = 0⇔
(
x2

1 + 2b1x1x2 + cx2
2

) (
cx′2

1 + 2cb2x
′
1x

′
2 + x′2

2

)
− c = 0.
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We use resultants of polynomials for eliminating b1 and b2 to obtain a
polynomial in c like

f(c) = c6 − 3

2
c5 +

−1360 + 330
√

17

8
c4 +

2970 − 720
√

17

4
c3 +

1360 − 330
√

17

8
c2 +

−13062 + 3168
√

17

4
c +

4354 − 1056
√

17

2
.

Now we obtain by factorizing

f(c) =

(

c2 +
16 − 4

√
17

2
c +

16
√

17− 66

2

)

·
(

c2 +
1−
√

17

4
c +
−9 +

√
17

8

)

·
(

c2 +
9
√

17− 39

4
+

161 − 39
√

17

8

)

and for g(c) := c2 + (8− 2
√

17)c + 8
√

17− 33 we get

c1,2 = (
√

17 − 4)±
√

2(33 − 8
√

17).

Because of (−4 +
√

17)2 = 33 − 8
√

17 the solutions c1,2 are in the field

L := Q(
√

17,
√

2) and we obtain by c > 0

c =
√

17− 4 +
√

2
√

17− 4
√

2.

Then we fit c into the polynomial
(

−(128 + 32
√

17)c2 − 16c
)

b2
1 +

(

(264 + 64
√

17)c3 + (64 + 20
√

17)c2 + 8c
)

b1 +

−(132 + 32
√

17)c4 − (68 + 16
√

17)c3 − (12 + 2
√

17)c2 + (32− 8
√

17)c

to obtain

b2
1 +

(
13

4
−
√

17 +
√

34− 17

4

√
2

)

b1 +

(√
17

2
− 15

8
+

17
√

2

8
−
√

34

2

)

= 0

which leads to b1 = 1
2 . In a last step we fit these solutions into the polyno-

mial
(

8cb1 − (5 +
√

17)c2 + (−10 + 2
√

17)c
)

b2 +

(

−(10 + 2
√

17)c + (−5 +
√

17)
)

b1 +
21 + 5

√
17

2
c2 + 4c +

21− 5
√

17

2

and obtain

(7
√

17− 29)b2 +
29− 7

√
17

2
= 0
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with b2 = 1
2 . Now we get the following Humbert form S = (S1, S2) =

((
1 1

2
1
2 −4 +

√
17− 4

√
2 +
√

34

)

,

(
1 1

2
1
2 −4−

√
17 + 4

√
2 +
√

34

))

with m(S) = 1. For the eutactic coefficients we get

ρ1 = ρ2 = ρ3 = ρ4 = 8+
√

34
30 , ρ5 = 14−2

√
34

15

and for the minimal vectors we compute M(S)\{x5 := e1, x3 := e2} =
{

x1 :=

(
−5+

√
17

2
1

)

, x2 :=

(
−3+

√
17

2
−1

)

, x4 :=

(
1
−1

)}

.

Together we obtain

S−1 =

5∑

i=1

ρi

(
xix

t
i

S1[x]
,

x′
ix

′
i
t

S2[x′]

)

and dim
∑

X∈XS
RX is equal to 5. Finally we compute

γ
K

(S) = 2.607989300 . . .

as a local maximum of γ
K

.

In the same way we obtain an extreme Humbert form S = (S1, S2) =
((

1 3+5
√

17−3
√

5−
√

85
16

3+5
√

17−3
√

5−
√

85
16

3−
√

5
2

)

,

(

1 3−5
√

17+3
√

5−
√

85
16

3−5
√

17+3
√

5−
√

85
16

3+
√

5
2

))

with m(S) = 1. For the eutactic coefficients we get

ρ1 =
12

45
, ρ2 =

44− 2
√

85

45
, ρ3 =

11 +
√

85

45
, ρ4 =

12

45
und ρ5 =

11 +
√

85

45

and for the minimal vectors we compute M(S)\{x5 := e1, x3 := e2}=
{

x1 :=

(
3−

√
17

2
1

)

, x2 :=

(
5−

√
17

2
3−

√
17

2

)

, x4 :=

(
1

−3−
√

17
2

)}

.

Together we obtain

S−1 =

5∑

i=1

ρi

(
xix

t
i

S1[x]
,

x′
ix

′
i
t

S2[x′]

)

and dim
∑

X∈XS
RX is equal to 5. Finally We compute

γ
K

(S) = 2.527919014 . . .

as a local maximum of γ
K

.
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Now we can use our algorithms to compute the Hermite-Humbert constant
for the case K = Q(

√
13). We need the following lemma:

Lemma 16. If K = Q(
√

13) and γ
K,2 ≤ dK

2 = 6.5 then any Humbert form

S with more than 4 minimal vectors has got a unimodular pair of minimal

vectors.

Proof. Let assume there is no unimodular pair in M(S). With the notations
of lemma 15 we obtain |NK/Q(det vij)| ≤ γ

K,2
for each vij and there holds

νpk
(vij) = 1 for at least k = 1, 2 or k = 3 where p1 = (2) and p2p3 = (3).

Further only one of these prime ideals can divide each vij by lemma 15.
Suppose this is done by the prime ideal p1. Because of e1 ∈ M(S) we
obtain νp1(β) = 1 for all (α, β)t ∈ M(S). Now let m1 := (α1, β1)

t,m2 :=
(α2, β2)

t ∈ M(S) and M ∈ GL(2,K) with columns m1 and m2. By as-
sumption νp1(detM) = 1 = νp1(α1β2 − α2β1) = νp1(γ) + νp1(α1ε2 − α2ε1)
with βi = (γ)εi where νp1(γ) = 1 and ε1, ε2 ∈ O×

K . Because of |OK/p1| = 4
and s ≥ 5 there muste be such m1,m2 ∈M(S) that νp1(α1 − α2) > 0, but
then there holds νp1(α1ε2 − α2ε1) > 0, a contradiction.

�

By the algorithm 10 we obtain 3220 triples. Because of lemma 16 we know
all extreme Humbert forms must have a unimodular pair of minimal vec-
tors. We found 552 Humbert forms with more than 4 minimal vectors.
By algorithm 11 we obtain 3 Humbert forms with more than four minimal
vectors up to unimodular equivalence . Their minimal vectors are listed in
the following table:

nr. Minimal vectors without e1 and e2

1

(

−3 + 1+
√

13
2

−2

)

,

(

−2 + 1+
√

13
2

−1 + 1+
√

13
2

)

,

(
1

1 + 1+
√

13
2

)

2

(

−2 + 1+
√

13
2

−1 + 1+
√

13
2

)

,

(
1+

√
13

2

1 + 1+
√

13
2

)

,

(
1

−1− 1+
√

13
2

)

,

(
1

1 + 1+
√

13
2

)

3

(

−3 + 1+
√

13
2

−2

)

,

(

−2 + 1+
√

13
2

−1 + 1+
√

13
2

)

,

(
1+

√
13

2

1 + 1+
√

13
2

)

,

(
2

2 + 1+
√

13
2

)
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We obtain a critical Humbert form S = (S1, S2) with

S1 =

(

1 −8+
√

13+7
√

7−2
√

91
18

−8+
√

13+7
√

7−2
√

91
18

7−2
√

13−14
√

7+4
√

91
9

)

S2 =

(

1 −8−
√

13−7
√

7−2
√

91
18

−8−
√

13−7
√

7−2
√

91
18

7+2
√

13+14
√

7+4
√

91
9

)

.

with m(S) = 1. For its eutactic coefficients we compute

ρ1 = ρ2 = 9+
√

91
28 , ρ3 = ρ6 = 3(11−

√
91)

70 , ρ4 = ρ5 = 29+
√

91
140

and for its minimal vectors we get M(S)\{x3 := e2, x6 := e1} =
{

x1 =

(
−3+

√
13

2
−1+

√
13

2

)

, x2 =

(
1+

√
13

2
3+

√
13

2

)

, x4 =

(
1

−3+
√

13
2

)

, x5 =

(
1

3+
√

13
2

)}

.

After verifying

S−1 =

6∑

i=1

ρi

(
xix

t
i

S1[x]
,

x′
ix

′
i
t

S2[x′]

)

and dim
∑

X∈XS
RX is equal to 5, we get

γ
K

(S) = γ
K,2

= 4.0353243 . . .

because of S is critical.
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