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IntroductionRelative extensions of algebraic number �elds are a basic concept in algebraic numbertheory and have been theoretically well�studied. The classic aim is to �nd an absolute�eld extension over Q which is isomorphic to the relative extension. If this connectionis established the problem can be considered solved.This is not the case in computational algebraic number theory. The di�erence be-tween absolute and relative extension is mirrored in di�erent representations. Thepity is that a relative extension does not have a relative integral basis in general.But there is the notion of a pseudobasis, which goes back to the theorem [O'M63,�81:3]. The pseudobasis replaces the integral basis and is su�cient for computationalpurposes although quite a few problems must be solved.A more general approach deals with �nitely generated modules over integral domainswhich can be represented with pseudobases. There are in�nitely many di�erent pseu-dobases for one module, and the overall subject of this thesis is to give e�cient al-gorithms to produce a good pseudobasis (which is called normal form) of a givenmodule. As integral bases are represented by matrices, pseudobases are representedby pseudomatrices, which can be seen as a generalization. The normal form for pseu-domatrices can be seen as a generalization of the Hermite normal form (HNF) formatrices.The earliest algorithmic approach is in [BP91], which is based on the �almost� con-structive proof in [O'M63]. Another algorithm is given in [Coh96], including a con-vention for a unique normal form. Relative normal form algorithms are implementedin KANT([DFK+97]) and in gp([BCDO98]).In [BP91] and [Coh96], only the case of the ring of integers of an algebraic number�eld over Q is dealt with. But, for many parts of the theory, generalizations arepossible. As the most general case, we will consider integral domains. Sometimeswe require the existence of inverse ideals and factorizations of ideals, which is well�de�ned only in Dedekind rings. The main aspect of this work is the implementationof algorithms. These algorithms are given for orders in algebraic number �elds overQ which will be called algebraic number rings.The ring of integers of an algebraic number �eld (or the maximal order of an algebraicnumber �eld), referred to in the following as oK, is an algebraic number ring and aDedekind ring.The �rst chapter presents algorithms for ideals over maximal orders of algebraic4



INTRODUCTION 5number �elds. Some de�nitions and propositions with non�constructive proofs aregiven for more general rings.The second chapter deals with the theory of reducing fractional elements with idealsover integral domains. The latter part gives reducing methods for algebraic numberrings.The third chapter deals with the theory of the representation of �nitely generatedmodules over integral domains with matrices. A completely satisfying result (whichis the proof of the unique existence of a normal form) can only be obtained forEuclidean rings.The fourth chapter deals with the theory of pseudomatrices over integral domains.For Dedekind rings we obtain a satisfactory correlation of pseudomatrices and�nitely generated modules. For maximal orders, normal form algorithms are given.The �fth chapter introduces an important application of the normal form algorithms:the relative ideals.The sixth chapter gives results of practical investigations with the author's imple-mented versions of normal form algorithms and also a comparison to the implementedversion in [BCDO98].I would like to refer the reader to the index if any notation or symbol is unclear.First of all I would like to thank my supervisor Prof. Michael E. Pohst. He pointed meto the subject of this work and helped me in all stages of the work with explanations,comments, and criticisms.I would like to thank Prof. Henri Cohen for being my second referee, for giving mean ear for questions, and for the hospitality at the Université Bordeaux.The KANT project has given my work a solid framework. Most of all I'd like toappreciate the help of Dr. Claus Fieker for support and collaboration in many aspects,Dr. Mario Daberkow for the introduction to the relative normal forms, Florian Hessfor the introduction to the KANT system, Carsten Friedrichs and Jürgen Klüners forstimulating conversations, Oliver Voigt for the technical support, and all the KANTgroup.I am greatly indebted to Catherine Roegner for revising the text of the thesis toimprove the English.Last but not least I thank Brigitte Trewin for her love.The typesetting has been done with [Knu86], using [Kop92] and [GMS94], with theaid of [Tho] and [Ned94].



Chapter 1Ideals in algebraic number ringsThis chapter contains various algorithms dealing with ideals and algebraic numbersin orders of an algebraic number �eld. They form the basis for the normal formalgorithms for pseudomatrices in chapter 4 and for their e�cient implementation.In the �rst four sections a collection of e�orts is given to improve the e�ciency ofthe arithmetic and basic functions for ideals over algebraic number rings as theoret-ically described in [PZ93, pp. 396�408] and in [Coh95, pp. 186�193, 202�204]. Thedescription in [vS87, pp. 23�96] is closest to the actual implementation in KANT.The rest of the chapter consists of detailed formulations, improvements, and gener-alizations of algorithms for algebraic numbers and ideals which are based on either[BP91] or [Coh96].The algorithms are supplemented with general formulations of de�nitions, proposi-tions, and methods for integral domains (commutative unital rings without nontrivialzero divisors) or Dedekind rings, where applicable.As usual the following de�nitions on ideals are used.De�nition 1.0.1:Let D be an integral domain and K its quotient �eld. A D�module a contained in D,including the zero ideal (denoted 0D), is called an integral D�ideal.A nonzero D�module a � K is called a fractional D�ideal i� there exists a � 2 D suchthat �a is a D�ideal.1.1 Representations of ideals over algebraic number ringsLet K be a �nite algebraic �eld extension of Q , which will be called an algebraicnumber �eld.Let O be an order of K. Let 
 = (!1; : : : ; !n) be a Z�basis of O:O = nXi=1 Z!i: (1.1.1)6



1.2. ARITHMETIC FOR IDEALS OF ALGEBRAIC NUMBERS 7This basis can be viewed as a Q �vector space basis of K:K = nXi=1 Q !i :Fractional O�ideals are presented by a nonzero integral O�ideal a and a denomi-nator d 2 N as ad .There are two basic principles for representing an integral O�ideal: either as a Z�basis (of n elements of O) or as an O�generating system (where two elements of Osu�ce � therefore it is called a two�element presentation).An integral O�ideal a can be represented as n algebraic numbers �i 2 K, for i 2 Nn ,or equivalently, a matrix A = (A1; : : : ;An) over Z (where the columns A1; : : : ;An ofA satisfy �i = 
Ai):a = nXi=1 �iZ = nXi=1 
AiZ: (1.1.2)This is called the basis presentation of a. For practical purposes, it is very usefulif A is in upper triangular Hermite normal form (HNF). See the general de�ni-tion 3.2.4.An integral ideal a can also be represented by a natural number a and an algebraicinteger � 2 O as a = aO + �O, which is called two�element presentation.Similarly, a principal ideal is represented with a single algebraic number � as a = �O.It is possible to convert the basis presentation into the two�element presentation andvice�versa (described in [vS87, pp. 40�41]).1.2 Arithmetic for ideals of algebraic numbersLet O be an order of an algebraic number �eld. Since fractional algebraic numbersalways have natural denominators, it is easy to base fractional on integral idealarithmetic:Algorithmic idea 1.2.1: Basing fractional arithmetic on integral arithmeticLet a and b be two fractional ideals. Let d1 be the denominator of a and d2 be thedenominator of b. Let d3 be the maximal natural factor of d1a (see de�nition 1.3.5),d4 the maximal natural factor of d2b. Let d5 = gcd(d2; d3) and d6 = gcd(d1; d4). Thenab = (d1d5a)(d2d6b)d1d6 d2d5 and d1d5a � O; d2d6b � O; d1d6 2 N ; d2d5 2 N :Let d = lcm(d1; d2). Thena+ b = da+ dbd :These formulas are used to base the arithmetic of fractional ideals on integral ideals.Therefore we may con�ne our e�orts to methods for integral ideals.



8 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS1.2.1 Special multiplication algorithmsIf we analyze the computation run times (this is demonstrated in section 6.5) of thesubfunctions of a normal form algorithm, we realize that a great part of the totalrun time is used for ideal multiplication. Therefore it is essential to optimize idealmultiplication for e�cient normal form implementations.We want to multiply two ideals. Ideals can be given in either basis presentationor two�element presentation. So we have three possible cases for the presentationsof the two ideals: two basis presentations, a basis presentation and a two�elementpresentation, and two two�element presentations.Since it is possible to convert the basis presentation into the two�element�presenta-tion and vice�versa, it is su�cient to have a multiplication algorithm for one of thethree cases, say to multiply two ideals in basis�presentation.From the aspect of e�ciency, this is not satisfactory, since the conversion of the idealpresentation is not an easy task. Indeed, it is possible to �nd special multiplicationalgorithms for each of the three cases for the presentations of the two ideals. Thus,for each ideal multiplication, the question arises of whether it is better to use thegiven presentations or if it is worth computing another presentation for one or bothof the ideals.This question is modi�ed if we use a particular ideal in a program or a computationalsession not for just one multiplication, but also for other computations. Then itmight be better to compute another presentation, even though this might not bepreferable for one multiplication. In practice many ideals are given in more thanone presentation. This raises another question: Which of the special multiplicationalgorithms is best, regardless of any computational costs for presentation conversion?There is another multiplication method. It uses a special case of a two�elementpresentation, which is called normal presentation. The multiplication of two idealsgiven in two compatible normal presentations is extremely fast, but the creation oftwo compatible normal presentations is relatively expensive.Below are more detailed descriptions of the di�erent algorithms. In section 6.2 resultsof experiments are given and, in conclusion, the heuristics used in KANT to have agood overall performance of ideal multiplication are discussed.Algorithmic idea 1.2.2: Basis presentations algorithmThe multiplication of two basis presentations is described in detail in [vS87, p. 35].It involves the multiplication of each of the Z�basis elements of the �rst ideal witheach of the Z�basis elements of the second ideal, resulting in n2 algebraic numberswhich form a Z�generating set for the product. With an HNF calculation this istransformed to a Z�basis of the product.Many e�orts have been done to improve integer HNF computations: for the mod-ular method see [HHR93], for a formal analysis see [KB79] and [CC82], for otherapproaches see [Hop94], [PB74], and [Fru76], and for Blankinship's method see[Bla63], [HM94].



1.2. ARITHMETIC FOR IDEALS OF ALGEBRAIC NUMBERS 9Algorithmic idea 1.2.3: Mixed presentations algorithmThis algorithm is suggested in [Coh95, p. 188]. Let a = aO+�O and b = �1Z+ � � �+�nZ. Because b is an ideal we have Ob = b. Thenab = aOb + �Ob = ab + �b = a�1Z+ � � �+ a�nZ+ ��1Z+ � � �+ ��nZ:Therefore a�1; : : : ; a�n; ��1; : : : ; ��n is a Z�generating system for ab, and we com-pute the HNF to get a basis for ab. So the algorithm involves 2n multiplications ofalgebraic numbers and an HNF of an n� 2n matrix.This algorithm is so fast that [Coh95, p. 188] prefers the determination of a two�element�presentation and a mixed presentations algorithm to the basis�presentationsalgorithm in case only the two Z�bases are given. See section 6.2 for the author'sresults.Algorithmic idea 1.2.4: Four generators algorithmLet a = aO + �O and b = bO + �O with a; b 2 Z and �; � 2 O. Then ab =abO + a�O + b�O + ��O, which gives an O�generating set of four elements. Withthe representation matrices of the algebraic numbers ab, a�, b�, and ��, we get aZ�generating system of ab with 4n elements. We then apply the HNF algorithm toget a Z�basis.This algorithm requires one multiplication of algebraic numbers (the multiplicationof a rational integer with an algebraic number can be neglected in complexity, sinceit needs only n integer multiplications as opposed to 2n2 � n integer multiplicationsand additions for a multiplication of two integral algebraic numbers, which can beseen in [Klü97, lemma 3.5]), three representation matrix computations for algebraicnumbers (the representation matrix of the rational integer ab is the identity ma-trix multiplied by ab and its computation can be neglected in complexity), and anHNF computation of an n � 4n matrix. But, the HNF computation behaves morelike a HNF computation of an n � 3n matrix because of the simple form of therepresentation matrix of ab.Algorithmic idea 1.2.5: Normal presentations algorithmNormal presentations are only de�ned for the maximal order oK of an algebraicnumber �eld K. The algorithms are described in detail in [PZ93, pp. 400�406]. Themain results are cited below:De�nition 1.2.6:Let P be a set of prime numbers, PK the set of all prime oK�ideals dividing any of theideals poK where p 2 P. (Prime ideals are nonzero integral ideals which are not equal toany product of two nontrivial integral ideals.)Let a be an integral oK�ideal. The pair (a; �) 2 N �K� is called a P�normal presen-tation of a i� the following four conditions are satis�ed:1. a = aoK + �oK;2. a =Qp2PK pvp(a) where vp(a) 2 Z is the p-adic valuation of a;3. aoK =Qp2PK pvp(a) where vp(a) � 0;



10 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS4. no p 2 PK occurs in the prime ideal factorization of �a�1.Proposition 1.2.7:Let P be a set of prime numbers, let a and b be integral oK�ideals. If (a; �) and (b; �) areP�normal presentations of a and b respectively, then (ab; ��) is a P�normal presentationof ab.Theorem 1.2.8:Let a; b 2 N , � 2 oK, � 6= 0, and a = aoK + b�1�oK be an integral oK�ideal. Let P bethe set of all prime numbers dividing ab. Then a has a P�normal presentation.If it can be assumed that the two factors are both in normal presentation of thesame set of prime ideals, then the multiplication is incomparably fast. A `heuristic'algorithm to compute the normal presentation is given in [PZ93, p. 405]BERNSTEIN's ideasAt this point, it is worth mentioning another interesting approach, the �lazy lo-calization� , presented in [Ber96], which requires further investigation. In the formpresented the algorithms are designed for equation orders of algebraic number �elds.Usually the maximal order is not an equation order. The naïve approach to calcu-late with non�equation orders involves switching from ideals presented in a equationorder to ideals presented in the maximal order. This is time�consuming and woulddestroy the bene�ts of the method.1.2.2 Inverse idealsTheorem (5.6) in [PZ93, p. 269] implies the equivalence of the existence of inverseideals for every fractional ideal (whose de�nition does not include the zero ideal)and the Dedekind property of a ring. Unlike addition and multiplication, we mustinsist on the order O being the maximal order O = oK since the maximal order isthe only order which is a Dedekind ring, as proposed in [Coh95, p. 184].Algorithmic idea 1.2.9: Inversion with the multiplicator ringThis algorithm is relatively new and is only published in [Fri97, pp. 93�98]. It isdescribed there in the context of relative ideals, but it is valid for absolute ideals aswell. The algorithm is now used in KANT since it appears to be the most e�cientone.Algorithmic idea 1.2.10: Inversion with the di�erentAn e�cient algorithm which uses the di�erent of the algebraic number �eld is givenin [Coh95, pp. 202�204]. The relevant statements are cited below:De�nition 1.2.11:The di�erent d(K) of an algebraic number �eld K with the maximal order oK is theintegral oK�ideal�� 2 K j TrK=Q (�oK) � Z	�1 � oK;



1.3. MINIMUM AND NORM OF AN IDEAL 11where TrK=Q denotes the trace of the representation matrix of an algebraic number inK over Q .Proposition 1.2.12:Let (!i)i2Nn be an integral basis of the algebraic number �eld K with the maximal orderoK and the di�erent d. Let the nonzero integral D�ideal a be given in basis presentationas A 2 on�nK as in (1.1.2). Let T = �TrK=Q (!i!j)�i;j2Nn . Then the columns of the matrix(AtT)�1 form a Z�basis of the ideal a�1d�1.The algorithm to compute the di�erent is given in [Coh95, p. 204].Algorithmic idea 1.2.13: Ideal inversion with normal presentationsAnother method uses the determination of the normal presentation. The following isa consequence of a theorem in [PZ93, p. 406]:Theorem 1.2.14:Let P be a set of prime numbers. Let a be an integral oK�ideal with the P�normal pre-sentation (a; �). Then there exists d 2 N such that (1; d��1) is a P�normal presentationof a�1.1.3 Minimum and norm of an idealThe rest of this chapter will include di�erent generalization levels. This should beclari�ed by the use of di�erent symbols for the ring used: D refers to an integraldomain or a Dedekind ring, O to any order, and oK to the maximal order in analgebraic number �eld K.De�nition 1.3.1:Let Dc � D be two integral domains, Kc and K the quotient �elds of Dc and D,respectively, with the propertiesKc \ D = Dc (1.3.1)8�1 2 D 9�2 2 D; d 2 Dc : d = �1�2: (1.3.2)Let a be a fractionalD�ideal. Then the Dc�minimum ideal of a is the fractionalDc�ideala \ Kc.The minimum of the zero ideal in D is the zero ideal in Dc.Proof that the Dc�minimum ideal is indeed a Dc�ideal.Firstly, let a be a nonzero integral D�ideal. a \ Kc is obviously a commutative ringsince a and Kc are. Because of Dc � Kc, we have Dc(a \ Kc) � Kc. a being anideal implies Da � a, and therefore Dca � a and Dc(a \ Kc) � a. We thus getDc(a\Kc) � a\Kc. From property (1.3.1) and a � D, we conclude that a\Kc � Dc.Therefore a \ Kc is an integral Dc�ideal.



12 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGSSecondly, let a be a fractional D�ideal. By de�nition, there exists a � 2 D such that�a is an integral D�ideal. Property (1.3.2) yields a d 2 Dc such that da is an integralD�ideal. It follows that da \Kc = d(a \ Kc) is an integral Dc�ideal. Hence a \ Kc isa fractional Dc�ideal, which completes the proof.The de�nition of the minimum ideal covers� the notion of the minimum of a nonzero integral ideal in an order D = O ofan algebraic number �eld over Q , which is introduced in [PZ93, p. 398]. Theminimum of the integral O�ideal a is the natural number min(a \ N).This is a special case of the general de�nition where Dc = Z and Kc = Q .The minimum ideal of a is an integral Z�ideal and therefore a principal idealgenerated by a natural number, which is the minimum.� the generalization to fractional ideals, which is used in KANT. Again let D =O be an order of the algebraic number �eld over Q . Let ad be a fractionalideal, where a is a nonzero integral O�ideal and d 2 N . The minimum of ad isthe minimum of the set a \ N divided by d.� the minimum ideal of a relative ideal, where Dc is the maximal order of analgebraic number �eld Kc over Q , K an algebraic �eld extension of Kc, and Dan order of K. The minimum ideal of a relative ideal is described in section 5.4.Algorithmic idea 1.3.2: Computing the minimum of an integral idealLet D = O be an order of the algebraic number �eld K and a be a nonzero integralO�ideal. We want to compute the minimum of a (which is the positive generator ofthe Z�minimum ideal).Let a be given in basis presentation as in (1.1.2): with a Z�basis (�1; : : : ; �n) whichcorresponds to a matrix A in upper triangular Hermite normal form.Since (�1; : : : ; �n) is also a Q �vector space basis for K, we can �nd bi 2 Q withi 2 Nn such that1 = nXi=1 bi�i:Let c 2 a \ Q . Then c = Pni=1 cbi�i. Since (�1; : : : ; �n) is a basis of the ideal a, thisis equivalent to 8i 2 Nn cbi 2 Z. We conclude thata \ Q = n\i=1 1biZ: (1.3.3)Let the basis matrix of a and its inverse be written asA = �aij�i;j2Nn ; A�1 = ��aij�i;j2Nn :If we can �nd ci 2 K, where i 2 Nn , such thatnXi=1 ci!i = 1



1.3. MINIMUM AND NORM OF AN IDEAL 13then we havenXj=1 �j nXi=1 ci�aji = 1with bj = nXi=1 ci�aji 2 K where nXi=1 bi�i = 1:Therefore �nding a representation of the multiplicative identity can be split up intwo subtasks; �nding a representation of the multiplicative identity in the basis ofO and the inversion of the representation matrix of a.If the basis 
 has the property !1 = 1, formula (1.3.3) for the minimum idealsimpli�es toa \ Q = 1�a11Z:Since A was assumed to be in upper triangular HNF, the entry a11 of A satis�esa11 = �a�111 . Therefore the minimum ideal of a is a11Z. The minimum (as a naturalnumber) is then simply a11.De�nition 1.3.3:Let D be a DEDEKIND ring. The norm of a fractional D�ideal ad , where a is an integralD�ideal, and d 2 N is the cardinality of the ring D=a divided by dn.(This de�nition is equivalent to the one given as a generalization to fractional idealsin [Coh95, p. 185].)Algorithmic idea 1.3.4: Computing the norm of an integral idealIf D = oK is a maximal order of an algebraic number �eld K, the norm of an idealis the determinant of the basis matrix A (see (1.1.2)) which is the product of thediagonal entries in case A is in HNF.De�nition 1.3.5:Let a be an integral ideal. The maximal natural factor of a is the maximum of allm 2 N such that am is an integral ideal.Algorithmic idea 1.3.6: Computing the maximal natural factor of an integral idealIf D = O is an order of an algebraic number �eld K, the maximal natural factorcan be determined by computing the minimum of the ideal and �nding its primefactorization. Starting with m = 1, for each factor p of this prime factorization it ischecked whether apm is an integral ideal.



14 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS1.4 Modular HNF computations for addition andmultiplication of ideals over algebraic number �eldsThis is a modi�cation applicable to all algorithms for ideals over an order D = O ofan algebraic number �eld K which apply an HNF computation to obtain a basis ofthe resulting ideal, notably addition and multiplication.Algorithmic idea 1.4.1: Modular ideal additions and multiplicationsLet a be a nonzero integral ideal and m its minimum as a natural number. ThenmO � a. Let �1; : : : ; �m be a Z�generating set of a, given as a matrix (mij)i2Nn ;j2Nm ,where �j = Pni=1mij!i. To transform the generating set to a basis in HNF we canuse the number m for modular HNF computations.Note that this is much better than using the gcd of rank minors of a (not HNF)matrix representing the sum and product, respectively, of the two ideals. The rankminor gcd is usually much larger because it does not pro�t from the fact that thematrices represent ideals.The following proposition allows an integral multiple of the minimum of the sum andthe product of two ideals to be computed.Proposition 1.4.2:Let a and b be nonzero integral O�ideals. Thenmin(a+ b) j gcd�min(a);min(b)� and min(ab) j min(a)min(b):Proof. a+ b � a =) (a+ b) \ N � a \ N=) (a+ b) \ N � (a \ N) + (b \ N)proves the �rst statement.Let c 2 (a \ N)(b \ N). Then 9a 2 a \ N ; 9b 2 b \ N such that c = ab. Obviouslyc 2 N and c 2 ab, which proves the second statement.1.5 Primitive elementsDe�nition 1.5.1:Let D be an integral domain. Let a be a nontrivial integral ideal. The element a 2 D iscalled a primitive element of a i� a 2 a n a2.Proposition 1.5.2:For any invertible nontrivial integral ideal over an integral domain D, there exists aprimitive element.Proof. a is integral or equivalently a � D. a is not trivial; therefore a 6= D.Assume a = a2. Since a is invertible we can multiply by a�1 on both sides andconclude a = D which is a contradiction.



1.6. IDEMPOTENTS FOR COPRIME IDEALS 15Algorithmic idea 1.5.3: Computing a primitive element of an integral idealIf D is a Dedekind ring, every fractional D�ideal is invertible. Therefore for anynontrivial integral ideal, there exists a primitive element.In maximal orders over algebraic number �elds, the following algorithmic ideas canbe used to compute the primitive element of an integral ideal. If an ideal is given intwo�element presentation, it is easy to see that one of the two generators of the idealmust be primitive. (Assume this is not the case. Then both generators are in a2 andthe whole of a is in a2, which is a contradiction to the fact that a is integral and nottrivial.)The algorithm therefore involves the computation of a2 (which is very easy) andtwo checks on membership of an algebraic number in an ideal. For this we haveto transform the two�element presentation into an HNF�basis presentation (whichinvolves the determination of the representation matrices of two algebraic numbersand an HNF computation of a 2n�n matrix). The part with the biggest complexityis the HNF computation.If the ideal is given in HNF�basis presentation, by the same argumentation as aboveit is clear that at least one of the basis elements must be primitive. So we simplychoose the basis element which is not an element of a2. Here the computation of a2,which involves an HNF computation of an n2 � n matrix, is the most di�cult part.The question is: Given the basis presentation of a, is it worth determining a two�element presentation and using the former method? Experiments show that this isalmost always the case.1.6 Idempotents for coprime idealsProposition 1.6.1:Let D be an integral domain. Let S be a �nite set of coprime integral ideals in D; e.g.,Xa2S a = 1D;where 1D denotes the trivial integral D�ideal generated by 1.Then, for every a 2 S, there exists aa 2 D satisfyingXa2S aa = 1:The proof is trivial from the de�nition of the sum of ideals.Let D = O be an order of an algebraic number �eld K given with a Z�basis
 = (!1; : : : ; !n) with the property !1 = 1. The following algorithm constructsthe idempotent elements:



16 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGSAlgorithm 1.6.2: Idempotents for integral idealsInput: A set of m coprime O�ideals given in HNF�basis presentation matrices Ai onsome Z�basis 
 = (!1; : : : ; !n) of O with the property !1 = 1.Output: Algebraic numbers aa 2 a (a 2 S) represented in the basis 
 withPa2S aa=1.Steps:1: Concatenate the basis matrices of the ideals: A := �A1 j � � � j Am�.2: Apply an HNF algorithm to A which yields a T such that H = AT is a concate-nation of an identity matrix with n(m� 1) zero columns at the end1.3: Extract the �rst column of T and split it horizontally in m vectors of length n:T1; : : : ;Tm.4: Compute the vectors Ui := AiTi for i = 1; : : : ; m. They represent elements ai ofK regarding the Q �basis of K. Because T is a matrix over Z, the ai satisfyai 2 ai; i = 1; : : : ; m, and Pmi=1 ai = 1.5: End.Proof. It is important here that the �rst element of the integral basis 
 of K equals1. Because of this the �rst canonical vectorE1 = 0BBB@ 10...0 1CCCArepresents indeed the 1 in K.We haveH = 0BB@ 1 0. . . 0 � � � 00 1 1CCA = AT = �A1 j � � � j Am�T:The �rst column of H is E1, so the �rst column B of T satis�es AB = E1.E1 = �A1 j � � � j Am�0B@T1...Tm1CA =) E1 = mXi=1 AiTiFor i 2 Nm , the vector Ti represents an element of the ideal ai because Ai is a basisof ai. The vectors AiTi represent elements ai of O such that ai 2 ai. Moreover thesum of the ai is 1. So this proves the validity of the algorithm.The complexity of this algorithm is determined by the complexity of the HNF com-putation.1. H is the identity matrix since the ideals are assumed to be coprime. Moreover, this is the checkif the ideals are indeed coprime.



1.7. APPROXIMATION THEOREM 171.7 Approximation theoremTo formulate the approximation theorem, we need the following notion of a specialclass of valuations (one valuation for every prime ideal p of a Dedekind ring), thep�adic valuation in [Coh95, p. 184].De�nition 1.7.1:Let D be a DEDEKIND ring and p a nonzero prime D�ideal.The p�adic valuation is the mapvp : IK [ f0Dgy ! Z [ f1gwhich satis�es8a 2 IK : a � pvp(a); a 6� pvp(a)+1 andvp(0D) =1:The p�adic valuation is de�ned for elements of K as:vp :K ! Z [ f1g� 7! vp(�D): (1.7.1)Proposition 1.7.2:Let D be a DEDEKIND ring. Let P be the set of all nonzero prime ideals in D and S be a�nite subset of P. Let (ep)p2S 2 ZS be integral exponents. Then there exists an a 2 Ksuch thatvp(a)(= ep if p 2 S� 0 if p 2 P n S:a is called the approximation of the fractional D�ideal a =Qp2S pep which satis�esvp(a) = (ep if p 2 S0 if p 2 P n S:Both the proof forDedekind rings and the algorithm for maximal orders of algebraicnumber �elds split naturally in two parts: to solve the problem for nonnegativeexponents and to base the general problem on the solution for positive exponents.y. 0D denotes the zero ideal (the ideal only containing zero), and IK denotes the group of fractionalD�ideals, which excludes the zero ideal



18 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS1.7.1 Approximation for nonnegative exponentsThe approximation theorem for nonnegative exponents can be formulated in themore general context of integral domains with the following modi�cation of the abovenotion of vp:De�nition 1.7.3:Let D be an integral domain and p an invertible prime D�ideal.The p�adic valuation is the mapvp : ID ! Z�0 [ f1gwith vp(0D) =1z. If a 2 ID n f0Dg, then vp(a) is the integer which satis�esa � pvp(a) and a 6� pvp(a)+1:Since p was assumed to be invertible, we have for all v 2 Z�0, pv+1 � pv. A nonzerointegral D�ideal a satis�es a � D = p0. Therefore we de�ned a proper map vp forevery invertible prime ideal p. With the properties given in [Coh95, p. 184] we seethat the map vp is an exponential valuation of ID in the sense of [PZ93, p. 248].This de�nition is equivalent to the de�nition 1.7.1 if D is a Dedekind ring. Againthe p�adic valuation is de�ned for elements of D according to formula (1.7.1).Proposition 1.7.4:Let D be a Dedekind domain. Let P be the set of all invertible prime ideals in D andS be a �nite subset of P. Let (ep)p2S 2 (Z�0)S. Then there exists an a 2 K such thatvp(a)(= ep if p 2 S� 0 if p 2 P n S:Proof. The idea is to consider for each p 2 S the ideal productap = Yq2Snfpg qeq+1:Then the ap are nonzero integral ideals which sum to 1D. By proposition 1.6.1, thereexist ap 2 ap whose sum is equal to 1.By proposition 1.5.2, and since all p 2 P are assumed to be invertible, p contains aprimitive element b. We set bp = bep 2 pep n pep+1.For all nonzero integral ideals a and b we have vp(ab) = vp(a) + vp(b). Moreovervp(bp) = 1 yieldsvp(bepp ) = ep;z. ID denotes the D�module of integral D�ideals including the zero ideal



1.7. APPROXIMATION THEOREM 19hence, the elementa =Xp2S apbpsatis�esvp(a)(= ep if p 2 S� 0 if p 2 P n S.Algorithm 1.7.5: Non�negative approximationInput: (ep)p2S 2 (Z�0)S .Output: a 2 K such that vp(a) = ep for p 2 S and vp(a) � 0 for p 2 P n S.Steps:1: Set ap :=Qq2Snfpg qeq+1 for all p 2 S 2.2: Apply algorithm 1.6.2 to ap; p 2 S, obtain ap; p 2 S with Qp2S ap = 1.3: Find primitive elements cp; p 2 S, for the ideals ap; p 2 S, as described in 1.5.2 .4: Set bp := cepp ; p 2 S.5: Set a :=Pp2S apbp.6: End.The complexity of this algorithm is determined by the complexity of �nding theidempotents (see section 1.6).1.7.2 Simple assemblingLet D be a Dedekind ring. Let S be a �nite set of prime ideals of D, and let(ep)p2S 2 ZS. The following algorithm �nds an a 2 K such that vp(a) = ep for p 2 S.However, it does not guarantee that vp(a) � 0 for p 62 S. The idea of the algorithmis to split the positive and negative values of ep, to compute a separate apos and anegfor the positive and negative values, respectively, and to divide apos by aneg.Algorithm 1.7.6: Simple assemblingInput: (ep)p2S 2 ZS.Output: a 2 K such that vp(a) = ep for p 2 S.Steps:1: Set Spos := �p 2 Sjep � 0	Sneg := SnSpos.2: Set fp := (ep if p 2 Spos0 if p 2 Sneg.2. If D is a Dedekind ring, then we can use ideal inversions to save computation time: seta :=Qq2S qeq+1 and ap := ap�ep�1 for all p 2 S



20 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS3: Set gp := (0 if p 2 Spos�ep if p 2 Sneg.4: Apply algorithm 1.7.5 to S together with fp; p 2 S to obtain apos and to Stogether with gp; p 2 S to obtain aneg.5: Set a := apos=aneg.6: End.It is clear that if there is any ep < 0, we can �nd a prime ideal p 2 P n S withvp(aneg) > vp(apos). This p satis�es vp(a) < 0.1.7.3 Corrected assemblingLet D be a Dedekind ring. On the basis of algorithm 1.7.6, it is possible to modifythe result a to guarantee vp(a) � 0 for all prime ideals p 62 S.This is done by multiplying a number c 2 N � D to a with the property thatvp(c)(= 0 p 2 S� �vp(a) p 2 P n S:De�nition 1.7.7:Let D be a DEDEKIND ring. The set S of prime D�ideals is called complete i� for everyprime number p such that there is a prime ideal p 2 S over p, it follows that every primeideal over p is in S.Algorithm 1.7.8: Correction of the simple assemblingInput: (ep)p2S 2 ZS, and S forms a complete set of prime ideals.Output: a 2 K such that vp(a) = ep for p 2 S and vp(a) � 0 for p 62 S.Steps:1: Apply algorithm 1.7.6 to S and (ep)p2S to obtain apos and aneg.2: Set c := jN(aneg)jQp2Sneg N(p)ep y.3: The result is a := caposa�1neg.4: End.Proof. First we assure that c has indeed zero valuations on the prime ideals in S.aneg can be written as âQp2Sneg p�ep, where â is an integral ideal, because of theproperties of algorithm 1.7.5. Moreover vp(â) = 0 for p 2 S.Let p 2 S, p be the prime number such that pD � p. Then the norm of a prime idealp is always a power of p. It follows vp(N(â)) = 0 for p 2 S since S is a complete setof prime ideals. By construction, we havec = N(aneg)Qp2Sneg N(p)�ep = N  anegQp2Sneg p�ep! = N(â):y. N() denotes the norm of an ideal, see de�nition 1.3.3.



1.8. OTHER ALGORITHMS 21(See [PZ93, p. 381] for properties of the norm of an ideal in a Dedekind ring.)Let q 2 P n S. Thenvq� Yp2Sneg pep� = 0since q is a prime ideal. This yieldsvq� Yp2SnegN(p)ep� = 0because S is a complete set of prime ideals. It follows thatvq(c) = vq(N(aneg)) and vq( caneg ) = 0;and hencevq(a) = vq(caposaneg ) � 0:This completes the proof of the validity of the algorithm.1.7.4 Complete algorithmTo �nish the algorithm for the approximation theorem, it is necessary to extend aset of prime ideals to a complete set of prime ideals:Algorithm 1.7.9: ApproximationInput: a DEDEKIND ring D, a set S of prime ideals, and (ep)p2S 2 ZS.Output: a 2 K such that vp(a) = ep for p 2 S and vp(a) � 0 for p 62 S.Steps:1: Collect all the prime numbers that the prime ideals of S are over in a list L.2: Set: Scomp := S.3: Loop: p 2 L.4: Check if S contains all prime ideals over p. If so go to the next loop cycle.5: Factorize the D�ideal pD. Add every prime ideal p which is not in S to Scomptogether with ep := 0.6: Apply algorithm 1.7.8 to Scomp and (ep)p2Scomp to obtain a, which is the result.7: End.1.8 Existence proofs and algorithms for other problems foridealsProposition 1.8.1 ([Coh96, Corollary 1.8]):Let D be a DEDEKIND ring. Let a and b be two nonzero integral D�ideals. Then thereexist



22 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS� an � 2 K such that �a is an integral ideal coprime to b, and� another � 2 K such that �a�1 is an integral ideal coprime to b.The proof can be found in the mentioned article.Algorithm 1.8.2: Solving �a � 1D; �a+ b = 1D in �Input: Non zero integral ideals a and b.Output: � 2 K such that �a � 1D and �a+ b = 1D.Steps:1: Prime factorize b, let the prime ideals dividing b be S.2: Apply algorithm 1.7.9 to obtain � 2 K with vp(�) = �vp(a) for p 2 S andvp(�) � 0 for all prime ideals p not in S.3: End.Algorithm 1.8.3: Solving �a � 1D; �a�1 + b = 1D in �Input: Non zero integral ideals a and b.Output: � 2 K such that �a � 1D and �a+ b = 1D.Steps:1: Prime factorize ab, let the prime ideals dividing ab be S.2: Apply algorithm 1.7.5 to obtain � 2 D with vp(�) = vp(a) for p 2 S andvp(�) � 0 for all prime ideals p not in S.3: End.The complexity is determined by the complexity of the factorization of the ideals bfor algorithm 1.8.2 resp. ab, for algorithm 1.8.3. Apart from the factorizations, the al-gorithms are polynomial. Algorithm 1.8.3 needs only the nonnegative approximation,which is much easier than the general approximation needed for algorithm 1.8.2.Proposition 1.8.4 ([Coh96, Proposition 1.11]):Let D be a DEDEKIND ring, and let a and b be two fractional D�ideals. Then there exist�1 2 a; �2 2 b and �1 2 a�1; �2 2 b�1 such that�1�1 � �2�2 = 1:The proof is immediate with the construction of the following algorithm and propo-sitions 1.6.1 and 1.8.1.The following algorithm computes the required elements in a maximal order of analgebraic number �eld.Algorithm 1.8.5: Finding �1 2 a; �2 2 b; �1 2 a�1; �2 2 b�1 with �1�1 � �2�2 = 1Input: Fractional ideals a and b.Output: Algebraic numbers �1 2 a; �2 2 b and �1 2 a�1; �2 2 b�1 such that �1�1 ��2�2 = 1.Steps:1: If either a or b is not integral, set d = lcm(den(a); den(b)). We execute thealgorithm with the ideals da and db to obtain �01 2 da; �02 2 db and � 01 2a�1d ; � 02 2 b�1d such that �01� 01 � �02� 02 = 1. Return with �1 = �01d , �2 = �02d ,�1 = d� 01, �2 = d� 02.



1.8. OTHER ALGORITHMS 232: Apply algorithm 1.8.3 to obtain � 2 D such that �a�1 � D and �a�1 + b = D.3: Apply algorithm 1.6.2 to obtain 
 2 �a�1 and � 2 b such that � + 
 = 1.4: Return with �1 = �, �2 = �, �1 = 
� , �2 = �1.5: End.The complexity of this algorithm is determined by the complexity of the algorithmto compute idempotents of coprime ideals and the complexity to �nd elements whichmake ideals coprime, which was described above.Another algorithmic idea for the case a = b that uses the normal presentation of anideal was given in [BP91] implicitly.Algorithm 1.8.6: Finding �1; �2 2 a; �1; �2 2 a�1 with �1�1 � �2�2 = 1Input: A fractional ideal a.Output: Algebraic numbers �1; �2 2 a and �1; �2 2 a�1 such that �1�1 � �2�2 = 1.Steps:1: If a is not integral, set d = den(a). Execute the algorithm with the ideal da toobtain �01; �02 2 da and � 01; � 02 2 a�1e such that �01� 01��02� 02 = 1. Return with�1 = �01d , �2 = �02d , �1 = d� 01, �2 = d� 02.2: Compute the two normal presentation of a as a = aD + �D.3: Compute a�1 with the two normal presentation as a�1 = D + b��1, whereb 2 Z; (a; b) = 1.4: Apply the extended EUCLIDean algorithm to obtain r; s 2 Z such that ar+bs = 1.5: Return with �1 = ar, �2 = �, �1 = �1, �2 = sb��1.6: End.The methods to compute and invert a normal presentation are described in [PZ93,pp.400�406]. Apart from the properties of the presentation of the inverse ideal, theproof of this algorithm is trivial. The most di�cult part of this algorithm is thedetermination of the normal presentation (see de�nition 1.2.6).Proposition 1.8.7 ([Coh96, Theorem 1.2]):Let D be a DEDEKIND ring. Let a and b be two fractional D�ideals, and let a; b 2 K notboth equal to zero. Set d = aa+ bb. Then there exist u 2 ad�1 and v 2 bd�1 such thatau+ bv = 1.The proof is easy using proposition 1.6.1 and the constructions of the followingalgorithm.Algorithm 1.8.8: Solving au+ bv = 1 with d = aa+ bb in u 2 ad ; v 2 bdInput: Fractional D�ideals a,b; a; b 2 K.Output: d = aa+ bb, u 2 ad�1, v 2 bd�1 such that au+ bv = 1.Steps:1: If a = 0 return u = 0, v = 1b .2: If b = 0 return u = 1a , v = 0.3: Compute d = aa + bb, c1 = aad�1, and c2 = bbd�1.4: Apply algorithm 1.6.2 to obtain e 2 c1, f 2 c2 such that e+ f = 1.5: Return u = ea and v = fb .



24 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS6: End.Proof. (Validity of the algorithm) Let a; b 6= 0. Since aa � d, the ideal c1 is integral,and the same applies to c2. From the construction, it follows that c1 + c2 = 1D, andtherefore the algorithm 1.6.2 is applicable.This algorithm is polynomial since algorithm 1.6.2 is.Let O be an order of an algebraic number �eld K of degree n. Let 
 be a Z�basis ofO as in formula 1.1.1. The following algorithm gives a solution of an equation if itexists.Algorithm 1.8.9: Solving Pki=1 �i�i = � in �iInput: �; �1; : : : ; �k 2 K; k 2 N .Output: �1; : : : ; �n 2 D such that Pki=1 �i�i = �.Steps:1: Compute d = lcm�den(�); den(�1); : : : ; den(�k)�.2: Compute the representation matrices of the algebraic numbers d�1; : : : ; d�k, andconcatenate them to a matrixM.3: Compute the upper column HNF of M with transformation matrix T. Let the�rst n columns, the nontrivial part, ofMT be H. Let the �rst n columns ofT be denoted with T 0 2 Kkn�n.4: Let A be the representation vector of d�: d� = 
A. Solve the matrix equationHC = A in C 2 Q n .5: If C 62 Zn, return with the message that the equation cannot be solved.6: Compute the vector B = T 0C.7: Split B = 0B@ b1...bkn1CA 2 Dkn into vectors Bi = 0B@bn(i�1)+1...bni 1CA 2 Dn vertically, fori 2 Nk , representing the algebraic numbers �i = 
Bi.8: End.Proof. Consider the ideal a = d�1D + � � �+ d�kD. A solution to the equation existsi� d� 2 a. Using the Z�basis presentation matrix H of a, it is easy to decide whetherd� 2 a. The rest of the proof deals with the transformation of a linear combinationin the Z�basis of a to a linear combination in the generating set �1; : : : ; �n of a.The matrixM represents the ideal a. H is another representation of a which allowsthe linear combination HC = A to be computed easily because of its triangularshape. Consequently,d� = 
A = 
HC: (1.8.1)The algorithm constructed H and T withMT = (H j 0 j � � � j 0) and MT 0 = H: (1.8.2)



1.8. OTHER ALGORITHMS 25M = (M1 j � � � jMk) consists of k n� n�matricesMi satisfying 
MiZn = d�iD.Since �i = 
Bi, this givesd�i�i = 
MiBi: (1.8.3)We conclude thatkXi=1 d�i�i = kXi=1 
MiBi (formula (1.8.3))= 
 kXi=1 MiBi!= 
MB= 
MT 0C= 
HC (formula (1.8.2))= d� (formula (1.8.1)):



Chapter 2Reducing algebraic numbers with ideals
This chapter deals with the following general task: Let D be an integral domain (acommutative unital ring without nontrivial zero divisors), K its quotient �eld, and abe a fractional D�ideal. Assume the statement: �if the element � 2 K has a certainproperty so has � + � for any � 2 a�. The task is to �nd a � + � which is �small�regarding a certain notion of size.The modulo calculus is a well�known theory addressing a similar task � in elemen-tary number theory, D = Z. The basic steps can be applied to more general rings aswell.The problem is to extend the theory of modulo calculus to fractional ideals andto fractional elements, but there is no canonical way to do this. In fact the usualfractional extension is not what we need for the general task mentioned above. Inthe sequel a distinction will be made between the modulo calculus, which is the usualfractional extension, and the reduce calculus.The �rst section deals with the case D = Z to clarify the di�erence between themodulo and reduce calculi. The second section states the basic de�nitions and propo-sitions for the general case of an integral domain D. The third section deals with thespecial case of orders of algebraic number �elds, including detailed algorithms mostof which are implemented in KANT.2.1 Reduce calculus for the rational numbersThis section goes back to elementary number theory. The well�known modulo cal-culus deals with a relation de�ned bya �m b ()Def 9c 2 Z : a� b = cm where a; b 2 Z; m 2 N : (2.1.1)This is an equivalence relation, and for m > 1 the classes form the �nite unital ringZm. For the units of this ring (which are the rational integers coprime to m) themultiplication has an inverse operation. From now on let m > 1.26



2.1. REDUCE CALCULUS FOR THE RATIONAL NUMBERS 27It makes sense to write fractions with denominators coprime to m in the modulocalculus. We have Fermat's proposition 11c �m c'(m)�1; where c 2 Z; (c;m) = 1: (2.1.2)From a di�erent standpoint it is possible to say that the relation �m is extendedto the set of rational numbers whose denominators are coprime to m, which will bedenoted byZ(m) =Def � an j a 2 Z; n 2 N ; (a; n) = 1; (n;m) = 1	: (2.1.3)With S = �n 2 Z j (n;m) = 1	, in [PZ93, p. 226] this set is called the S�localizationof Z, in [Lan94, ch. II,�4] it is called quotient ring of Z by S.Together with formulas (2.1.1) and (2.1.2), we have de�ned a new relation whichwill be denoted by �Mm. The superscript only refers to the behavior of the relation onfractional numbers. The superscriptM should indicate that it refers to the extensionof the Modulo calculus towards fractional elements. Another superscript R refers tothe Reduce calculus, which will be de�ned later.The relation �Mm is an equivalence relation on the elements of Z(m). It has exactly mequivalence classes which form the �nite unital commutative ring Z(m)=�Mm, which isisomorphic to the ring Zm.But this is not the only possible extension of the relation �m towards Q :a�Rm b ()Def 9c 2 Z where a� b = cm where a; b;m 2 Q : (2.1.4)The relations �Rm and �Mm are identical for integral numbers. But, if denominatorsoccur, they are very di�erent: 12 �M5 3 but 12 6�R5 3. Although 125 �R5 �135 , we cannotwrite 125 in connection with �M5 because it is not well�de�ned. And 13 �R34 103 is true,but �M34 is not de�ned at all.If a; b;m 2 Q and d is the least common denominator of a, b, and m thena�Rm b () ad�Mmd bd: (2.1.5)2.1.1 Modulo and reduce functionsIntegral modulo functions �x representatives of the classes of Z=�m. They come intwo �avors (as smallest positive and smallest absolute) and can be assumed to beknown.To �x representatives of the classes of Z(m)=�Mm we use the following de�nition, whichis a simple extension from the integral modulo functions.1. ' denotes the Euler phi�function



28 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALSDe�nition 2.1.1 (Modulo function):Let m 2 N . Then we de�ne two functions+modMm : Z(m) ! Z�0 (2.1.6)a 7! b with a�Mm b and 0 � b < m (2.1.7)(referring to the residue system of Zm with the smallest nonnegative values) and�modMm : Z(m) ! Z (2.1.8)a 7! b with a�Mm b and � m2 < b � m2 (2.1.9)(referring to the residue system of Zm with the smallest absolute values). The notationmodMm refers to either +modMm or to �modMm by convention.We extend modMm(a) to a nonpositive m bymodMm(a) =Def (modM�m(a) if m < 0a if m = 0:A modulo function modM is a familymodM : Z! Q Zm 7! modMmof such functions.De�nition 2.1.2 (Reduce function):Let m 2 Q and let modM be a �xed modulo function.modRm : Q ! Qa 7! modMmd(ad)d ;where d is the least common denominator of a and m. A reduce function is a familyof functionsmodR : Q ! Q Qm 7! modRmA reduce function modR satis�esa�Rm b () modRm(a) = modRm(b); where a; b;m 2 Q :To investigate the structure of Q =�Rm, we �rst let a;m 2 Q and a the class of aregarding �Rm. We can de�ne addition witha + b =Def a+ b



2.2. REDUCE CALCULUS IN INTEGRAL DOMAINS 29This de�nition is independent of the choice of the representatives: Let a1; a2; b1; b2 2Q , a1�Rma2, b1�Rmb2. There exist c1; c2 2 Z such that a1�a2 = c1m and b1�b2 = c2m.Therefore (a1 + b1)� (b1 + b2) = (c1 + c2)m, and thus a1 + b1 �Rm a2 + b2.The usual construction of multiplicationa � b =Def a � b;however, depends upon the choice of representatives:For m = 7, �32� �23� = �32 23� = 1: While, on the other hand, 32 �R7 172 and �172 � �23� =�172 23� = �173 � 6= 1:Thus, this de�nition of multiplication with the usual construction does not lead toa multiplication with the usual properties, so that Q =�Rm can only be considered asan additive Abelean commutative group.
2.2 Reduce calculus in integral domainsLet D be an integral domain (a commutative unital ring without nontrivial zerodivisors). Let K be the �eld of fractions of D as de�ned in [Lan94, ch. II, �4] .D can be embedded in K, e.g. an element of K which can be represented as �1 isidenti�ed with � 2 D. These elements will be called integral elements, as opposed toall elements of K which are called fractional elements.An element � 2 K can be represented by (usually in�nitely) many symbolic fractions.To pick one of them, the general notion of denominator will be needed.De�nition 2.2.1:A denominator mapping is a function: den : K ! D n f0g with the property 8� 2K; den(�)� 2 D.There exists at least one denominator mapping � this is a simple consequence ofthe selection axiom of set theory.Every element � 2 K can be represented by the fraction den(�)�den(�) , where den(�)� 2 Dand den(�) 2 D.Example 2.2.2. Let D be an algebraic number ring. N can be embedded in D. Forevery � 2 K, it is possible to �nd a natural number d such that d� 2 D. Consequently,the denominator should be de�ned as the least natural number d which satis�es d� 2D.



30 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALS2.2.1 Modulo calculusDe�nition 2.2.3:Let D be an integral domain and K its quotient �eld. Let a denominator mapping denbe �xed according to de�nition 2.2.1.Let �; � 2 K and a a nonzero integral D�ideal. � is called congruent � modulo a,denoted ��Ma �, i�� den(�)D + a = 1D; 2� den(�)D + a = 1D, and� den(�) den(�)�� den(�) den(�)� 2 a.Example 2.2.4. Let D = Z. This de�nition of the modulo relation is consistentwith the modulo calculus in Z. Every nonzero integral ideal is generated by a naturalnumber, let a be the Z�ideal generated by m 2 N: a = mZ.Example 2.2.5. Let D be a ring of algebraic numbers over Z, let the denominator be�xed as in example 2.2.2. We want to construct an element in D which is equivalentto 
d where 
 2 D; d 2 N. We can invert the denominator d modulo the nonzerointegral D�ideal a, e.g. �nd a positive integer n that nd �Ma 1. This last property isequivalent to nd�Ma\Z1. The ideal a\Z is principal and generated by a natural numberm, so we have n := d'(m)�1. As in the integer case this is only possible if d and mare coprime which is implied by a+ dD = 1D.Proposition 2.2.6:Let D be an integral domain and a a nonzero integral D�ideal. Let D(a) be the set offractional elements whose denominator is coprime to a:D(a) := ��� 2 K j �; � 2 D; � 6= 0; �D + a = 1D	:With S = �� 2 K j �D+a = 1D	, in [PZ93, p. 226] this set is called the S�localizationof D, in [Lan94, ch. II, �4] it is called quotient ring of D by S.Then �Ma is an equivalence relation on D(a).The quotient D(a)=�Ma is a unital commutative ring isomorphic to D=�Ma .Proof. Re�exivity is trivial because 0 is an element of every ideal. Symmetry is trivialbecause �1 is always a unit in D. Transitivity is easy because, for �1 � �2 2 a and�2 � �3 2 a, by the de�nition of an ideal, �1 � �3 = (�1 � �2) + (�2 � �3) 2 a.The last statement uses the fact that D=a is a unital commutative ring. In everyequivalence class there are integral elements. This clearly de�nes a 1�1 correspon-dence which is an isomorphism.2. �D denotes the fractional D�ideal generated by � 2 K; 1D is the trivial ideal generated by 1.



2.2. REDUCE CALCULUS IN INTEGRAL DOMAINS 31De�nition 2.2.7:Let D be an integral domain. A modulo function is a family of functionsmodM : ID n f0Dgy ! D(a)Da 7! modMa ;where for any integral D�ideal a the function modMa : D(a) ! D satis�es the properties8�; � 2 D(a); ��Ma � () modMa (�) = modMa (�) andmodMa (�) lies in the same class of D(a)=�Ma as �:For any integral domain D, there exists such a modulo function � this is an imme-diate consequence of the selection axiom of set theory and the fact that �Ma is anequivalence relation and splits D(a) in disjoint classes.2.2.2 Reduce calculusAgain the relation �Ma can be seen as an extension of the integral modulo calculusto K, and again this is not the only possible extension.De�nition 2.2.8:Let �; � 2 K and let a be a fractional D�ideal or the zero ideal. Then ��Ra � i� ��� 2 a.Remark:Let �; � 2 D and let a be a nonzero integral D�ideal. Then ��Ra � () ��Ma �.The �Ma relation can be de�ned in terms of the �Ra relation:Lemma 2.2.9:Let �, � 2 K and a be a fractional D�ideal. Let � be a common multiple of thedenominators of �, �, and a. Then��Ra � () ���M�a ��:Proposition 2.2.10:�Ra is an equivalence relation for any fractional D�ideal a.Proof. Re�exivity is trivial because 0 is an element of every ideal. Symmetry istrivial because �1 is always a unit in D. Transitivity can be shown with the idealproperties.y. {0D} denotes the zero ideal (the ideal only containing zero) and ID denotes the set of integralD�ideals with the zero ideal.



32 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALSDe�nition 2.2.11:Let D be an integral domain and K its quotient �eld. A reduce function is a family offunctionsmodR : IKz ! KKa 7! modRa ;where for any a 2 IK the function modRa : K ! K satis�es the properties8�; � 2 K; ��Ra � () modRa (�) = modRa (�) and (2.2.1)modRa (�)�Ra �: (2.2.2)An element � 2 K is called reduced (modulo the fractional D�ideal a) i� modRa (�) = �.Proposition 2.2.12:Let D be any integral domain and K its quotient �eld.� There exists a reduce function modR.� For any reduce function modR, any fractional D�ideal, and any � 2 K, theelement modRa (�) 2 K is reduced.� Let a be a fractional D�ideal and modR a reduce function. In every class of K=�Rathere exists exactly one reduced element.Proof. The �rst statement is a consequence of the selection axiom of set theory andthe fact that �Ra is a equivalence relation and splits K in disjoint classes.For the second statement, let � = modRa (�). From property (2.2.2) we know � 2� �K=�Ra � and � �Ra �. By property (2.2.1), modRa (�) = modRa (�), which completesthe proof.The third statement follows from the second statement and property (2.2.1).Reduce functions are very important for computational applications. If there is ane�cient algorithm to compute the reduce function, it can be used to decide therelation �Ra .If K has a strict ordering < and any subset of K contains a minimum regarding <,a reduce function can be de�ned using this orderingreda(�) =Def min< f� 2 K j ��Ra �g :If we have a modulo function for integral ideals and elements, we can construct areduce function with the following lemma.z. IK denotes the group of fractional D�ideals without the zero ideal.



2.3. REPRESENTATIVES IN ALGEBRAIC NUMBER RINGS 33Lemma 2.2.13:Let D be an integral domain and K its quotient �eld. Let modM be a modulo functionas in de�nition 2.2.7 . Let a be a fractional D�ideal and � 2 K. Letting � 2 D be theproduct of the denominators of a and �,modRa (�) =Def modM�a(��)� 2 K;is a reduce function.2.3 Representatives in algebraic number ringsLet K be a �nite algebraic �eld extension of Q . Let O be an order of K. This is aspecial case of the previous section since K is the quotient �eld of O.Let 
 = (!1; : : : ; !n) be a Z�basis of O. An � 2 O is represented by a vectorA = 0B@a1...an1CA with a1; : : : ; an 2 Zas � = nXi=1 ai!i = 
A: (2.3.1)The problem of �nding reduce functions can be dealt with in two steps:� Finding modulo functions for integral algebraic numbers and integral ideals.(This is the main subject of this section.)� Constructing a reduce function from an integral modulo function. (This issimply done with lemma 2.2.13.)There is a variety of possible modulo functions to choose from in algebraic numberrings, the classi�cation of which is dealt with in the next subsection. The key for thisclassi�cation is the notion of quality.2.3.1 Quality measurements of representations of algebraic numbersIt is important to stress that we are not talking about the quality of algebraic numbers� the reduce functions are not independent of the basis that the algebraic numbersare presented with.A quality measurement can be either� a relation >�, where the quality of the representations of two algebraic num-bers (and not the numbers themselves) is compared or



34 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALS� a function� : Zn ! R�0 :If we have a quality function �, we can de�ne a quality relation >� asA >� B ()Def �(A) > �(B):The aim of the quality relation/function is that small values of � resp. small rep-resentations of algebraic numbers regarding >� should correspond to computational�desirable� algebraic numbers.What do we expect from a good quality function?It should1. measure how much memory space is required to store the representation, withsmall values of � corresponding to little required memory space;2. give a prediction on the time and memory e�ciency of computations withthe representation, with small values of � corresponding to fast and e�cientcomputations;3. give a prediction on the quality of the results of arithmetic with the repre-sentations; i.e., the representation of the sum/product of algebraic numberswith small values of � of their representations should also have a small valueof �;4. give results independent from the basis 
; even an �odd� basis should notdestroy the usefulness of the quality function, in which case we can speakof the quality of an algebraic number and not only of the quality of therepresentation;5. be computationally inexpensive to decide >� resp. compute �;6. be easy to select (for a representation A of a given algebraic number) anotherrepresentation B of an algebraic number with B <� A.In the sequel di�erent possible quality functions/relations are introduced, none ofwhich is perfect. For each of them comments are provided on how each of the criteriafor a quality function/relation given above is satis�ed by the particular quality func-tion/relation. The comments are based on both practical observations and theoreticalconsiderations.Vector norm of the representationThis quality function is either the 1�norm ( nPi=1 jaij), 2�norm (r nPi=1 a2i ), or the 1�norm (maxfjaijg) of the representation vector A.Evaluation of the criteria:1. Perfect. The vector norm of the representation is a good estimate of thememory space required, in particular the 1�norm.



2.3. REPRESENTATIVES IN ALGEBRAIC NUMBER RINGS 352. Perfect. Addition of algebraic numbers involves vector addition of the repre-sentation. Multiplication is usually done with a multiplication table � theactual multiplication involves a matrix multiplication with the representationvector.3. Perfect for addition. Good for multiplication if the basis 
 is such that theentries of the multiplication table are small.4. Basis dependent.5. Very easy for the 1�norm and the 1�norm; relatively easy for the 2�norm.6. Trivial since the norms are monotone in each of the coe�cients of the repre-sentation.Lexicographic ordering of the representationThis is a quality relation, only, de�ned as:0B@a1...an1CA >� 0B@ b1...bn1CA ()Def 9i 2 Nn : ��jaij > jbij or ai = �bi > 0�and 8j 2 Nn ; j > i! aj = bj�Evaluation of the criteria:1. Bad. There are in�nitely many algebraic numbers with a lower quality thane.g. any basis element of 
 which is not a rational number.2. Bad for the same reason as criteria 1. On the other hand, there is a nicefeature. If the �rst basis element !1 is 1 (every order in a number �eld has abasis with this property,) then the representations with the lowest qualitiesare representations which represent the rational integers.3. Good for addition, bad for multiplication.4. Basis dependent.5. Very easy to decide.6. Trivial since the norms are monotone in each of the coe�cients of the repre-sentation.Complex absolute value/T1�norm/rooted T2�normThese two quality functions are based on the �eld embeddings of the algebraic num-ber �eld K into the complex numbers C via a monomorphism� : K ,! C :The complex absolute value�(A) = ���(
A)��can serve as a quality function.



36 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALS� depends on the choice of a particular embedding � and usually there exist di�erentembeddings.An approach to overcome the dependency is to consider the conjugate �elds of K.[Coh95, Theorem 4.1.8] states that there are exactly n �eld embeddings, where n isthe degree of K. Let � be the set of all �eld embeddings � : K ,! C . Then we havetwo quality functions which depend neither on a �eld embedding nor on the basis 
:T1�norm �(A) = T1(
A) =P�2����(
A)�� androoted T2�norm �(A) =pT2(
A) =qP�2����(
A)��2.Evaluation of the criteria for the above quality functions:1. Good if the basis is relatively �well�behaved�, but still reasonable if not.2. Good, in particular for multiplication.3. Excellent for the multiplication because we have the multiplicativity for both�. For addition we have the triangle inequality. This is a bad estimate if thealgebraic numbers are close to being orthogonal, but reasonable in practice.4. Basis independent because the value is not based on the representation, buton the algebraic number itself. But the complex absolute value is dependentof the choice of the �eld embedding of K in C . The T1/rooted T2�norm isindependent on the choice of the embedding.5. More expensive than the representation vector norm and the lexicographicordering.We need the approximated complex values of the basis elements !1; : : : ; !n,which are not di�cult to obtain and also important for other algorithms withO, so that they are likely to be given anyway. Thus, the complex absolutevalue is quite easy to compute.For the T1/rooted T2�norm we need the complex values of the conjugatesand some real number computations. Because the precision is not required tobe high, this should not be much more expensive than the complex absolutevalue.6. Di�cult.NormThe norm of an algebraic number is the determinant of its representation matrix,which is the basis matrix of the principalO�ideal generated by this algebraic number.Evaluation of the criteria:1. Bad. Units of O have norm 1, but usually there are in�nitely many of them.Of course almost all of them can be said to be incredibly huge. But theproblem with units is only the tip of the iceberg. In general there is only aweak correlation of the norm and the memory space.2. Bad, as above.3. Perfect for the multiplication because the norm is multiplicative. Bad foraddition: the sum of two units might have a huge norm.



2.3. REPRESENTATIVES IN ALGEBRAIC NUMBER RINGS 374. Basis independent.5. The computation of the representation matrix involves a matrix multiplica-tion and a determinant calculation. This is more expensive than all otherquality functions considered in this section.6. Di�cult. Probably as di�cult as unit computation (see [Coh95, Algorithm4.9.9]).ComparisonIn most cases the vector norm of the representation is the reasonable choice for a qual-ity function regarding the criteria given. Because of the e�cient algorithm 2.3.1, thelexicographic order is a good alternative for the task of reducing algebraic numbersmodulo ideals. If we require the quality function to be independent of the represen-tation of the algebraic number, then the T1/rooted T2�norm should be preferred.2.3.2 HNF basis reductionThis subsection describes one important modulo function � the HNF basis reduc-tion.Let a be an integral ideal. We use the Z�basis (as in equation 1.1.2) �1; : : : ; �n for a,where �i 2 O. The �i have representations in the basis 
 of O such thata = nXi=1 Z�i = nXi=1 Z nXj=1 aij!j: (2.3.2)The ideal a is said to be represented by the Z�matrix A = (aij)i;j2Nn .Because of the elementary algebraic properties of an ideal, this matrix can be trans-formed to an upper triangular HNF which still represents a basis for a.Denote the projection of the i-th component of the vector 0B@a1...an1CA, which is an epi-morphism from Kn to K, by pri : Kn � K, i.e.pri0B@a1...an1CA = ai:



38 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALSAlgorithm 2.3.1: HNF reduction of an algebraic number modulo an idealInput: An HNF basis of an integral ideal �1 : : : �n and an integral algebraic number �represented as a vector.Output: A canonical representative � of the class of � in O=�Ma .Steps:1: Init � := �.2: Loop i = n; : : : ; 1.3: Find q 2 Z that ��pri(� � q�i)�� is minimal3.4: Assign � := � � q�i.5: The representative of �'s class is now in �.6: End.Remarks:(1) The uniqueness is guaranteed in a very straightforward way. The algorithmreturns the smallest representation regarding the lexicographic order mentionedin the previous subsection.(2) The algorithm is relatively fast. The complexity is as follows (counting integeroperations only and disregarding the size of the integers): n divisions, n(n +1)=2 � n2=2 multiplications and additions.(3) Coe�cient growth of the intermediate entries of the representation of � mayoccur, most of all the �rst entry, which su�ers from n�1 relatively uncontrolledadditions. Let N be an upper bound on the absolute values of the HNF matrixentries and of the entries of the vector. The worst case multiplicator of the �rstloop can be N (although this is very unlikely). So the coe�cients of the vectorare now bounded by N2. Iterating this consideration, we see that the coe�cientsize is roughly bounded by Nn�1.This consideration ignores the fact that the matrix is in HNF. Say the �rstmultiplicator has a large absolute value (close to N) and the penultimate entryan�1;n of the last column of the HNF matrix has large absolute value (close toN) as well. Then the (n � 1)-st entry of b is now close to N2. But because thepenultimate diagonal entry an�1;n�1 is larger than an�1;n, the second multiplica-tor must actually be smaller than N . This thought can be extended analogouslyto all entries of the vector: if the entry has signi�cant growth because of largeentries in the matching row of the HNF matrix, the diagonal entry is large aswell and keeps the multiplicator small. So the entries of the vector are usuallynot larger than N2.In practice coe�cient growth does not cause any trouble.3. It is possible to take another convention here: �nd q 2 Z such that pri(�� q�i) has its minimalnonnegative value. This convention de�nes another possible HNF reduction.



2.3. REPRESENTATIVES IN ALGEBRAIC NUMBER RINGS 392.3.3 General basis reductionThe next three subsections describe a class of modulo functions which is a general-ization of the HNF basis reduction.Let a be an integral ideal with Z�basis as in equation (2.3.2). There is a much moregeneral method of reducing an element modulo this ideal not requiring the HNFproperty of the basis matrix of a. This algorithm is based on the fact that the idealbasis can be considered as a vector space basis of the �eld K.Algorithm 2.3.2: General basis reduction of an algebraic number modulo an idealInput: A basis of an integral ideal �1; : : : ; �n and an integral algebraic number � repre-sented as a vector.Output: A representative � of the class of � in O=�Ma .Steps:1: Represent � as a linear combination of the �1 : : : �n with rational coe�cientsq1; : : : ; qn : � =Pni=1 qi�i.2: Assign � = ��Pni=1bqie�i.3: End.Remarks:(1) The symbol bqe denotes the nearest integer to q preferring q� 12 to q+ 12 in caseq is exactly an integer plus a half. So �12 < q � bqe � 12 .(2) The algorithm provides an element of the class of � because Pni=1bqie�i is anelement of the ideal a. This element is uniquely determined because �1; : : : ; �nis a basis of K so the qi are uniquely determined.(3) The complexity of this algorithm is determined by the complexity of �nding thelinear combination for �.(4) If ��Ma 0 the algorithm returns � = 0.(5) Consider any quality function � satisfying� �(A+ B) � �(A) + �(B) for A;B 2 Kn (triangle inequality) and� �(�A) = j�j�(A) for A 2 Kn; � 2 K (linearity with respect to multiplica-tion).Examples are the norm of the representation and the rooted T1/T2�norm. Thenthe quality of � (identifying the quality of an algebraic number as the qualityof its representation here) is bounded�(�) = � nXi=1 (qi � bqie) �i! � nXi=1 jqi � bqiej�(�i) � 12 nXi=1 �(�i):The practical value of this algorithm is that we are able to choose an ideal basiswith elements of a better quality than the HNF basis. The inequality guaranteesa good quality of the reduced element.So our problem splits into two other problems: how to �nd a good ideal basis andhow to compute the coe�cients for a linear combination. We begin with the latter.



40 CHAPTER 2. REDUCING ALGEBRAIC NUMBERS WITH IDEALS2.3.4 Finding linear combinationsAs �1; : : : ; �n is a Z�basis for the ideal a, it is also a �eld basis for K as a Q �vectorspace. An element � 2 K is represented in the basis 
 as Pni=1 ai!i with ai 2 Q . Sowhat we have to do is nothing more than a basis transformation.Because �1; : : : ; �n are given in the basis 
, we have a Q �matrix M with(�1; : : : ; �n) = (!1; : : : ; !n)M:So we have� = 
0B@a1...an1CA = (�1; : : : ; �n)M�10B@a1...an1CA ;which gives us the linear combination as the result of an inversion of a rational matrixand a matrix multiplication.2.3.5 Finding a small ideal basisUsually the HNF reduced basis for an ideal is represented by a reasonably smallmatrix. There are smaller bases4, but in general it is cumbersome to minimize any sizemeasure. We have to �nd a trade�o� between computation costs and basis quality.The LLL�algorithm is a good method to get a matrix which represents a betterbasis at reasonable computation costs. See [Coh95, p. 81] or [PZ93, sec. 3.3] forintroductions.The LLL�algorithm is polynomial, but usually much slower than HNF computation.It is especially useful if the better basis is not just used to reduce a single algebraicnumber. There are di�erent versions of LLL to be taken into consideration. TheGram�Schmidt�coe�cients might be computed either with rational arithmetic orapproximated real arithmetic, for instance. The details will not be discussed here.Henri Cohen suggests in [Coh96] another method called partial reduction, which issupposed to be more quickly than LLL and still have coe�cients with pretty smallabsolute values, although nothing can be proven as with LLL. The experimentsperformed did not seem very promising, so this approach was not followed.2.3.6 Reducing algebraic numbers with rationalsIf the ideal to reduce with is a principal ideal with a rational generator, there is anobvious reduce algorithm which is much easier than the above algorithms.4. Let � be a quality function. The size of a basis �1; : : : ; �n is measured by the sum of the ��valuesof the vectors representing �i for i 2 Nn .



2.3. REPRESENTATIVES IN ALGEBRAIC NUMBER RINGS 41Algorithmic idea 2.3.3: Reducing algebraic numbers with rationalsIf the algebraic number 
A (where 
 = (!1; : : : ; !n) is the basis of O and A = 0B@a1...an1CAa rational vector) is to be reduced by r 2 Q we can use the reduce functionmodRr (
A) = 
0B@modRr (a1)...modRr (an)1CA :Of the quality functions considered in subsection 2.3.1 we observe that� the algorithm minimizes the quality function �vector norm of the representa-tion�;� as the HNF�basis of an ideal generated by a rational number is a diagonalmatrix, the result is the same as the result of the HNF�reduction algorithm.Therefore it gives the �rst number considering the lexicographic order, also.



Chapter 3Equivalence and normal forms of matricesLet D be an integral domain (a commutative unital ring without nontrivial zerodivisors) and K its quotient �eld. This chapter deals with the important correspon-dance of �nitely generated K�modules and classes of matrices over K. The key is tode�ne an equivalence relation � on Kn�m such that Kn�m=� is isomorphic to theD�module of �nitely generated D�modules of rank not larger than n. The even moregeneral approach is to extend the equivalence relation to matrices of di�erent size,the set Sm2N Kn�m. This isomorphism is an important theoretic concept for the un-derstanding of the structure of the module of �nitely generated modules. Even moreimportant though for the practical investigation is that modules can be representedby matrices.The relation � comes in three �avours: the� module de�nition is aimed at the representation mapping,� transformation de�nition is aimed at e�cient algorithms,� matrix multiplication de�nition supplies an additional theoretic background,�rst of all the use of the determinant.The equivalence of these three de�nitions perfects the correspondance of modules andmatrices. Unfortunately, the equivalence does not hold for the generality of integraldomains � we will deal with the question of how much can be done.3.1 Matrix equivalence de�nitionsDe�nition 3.1.1:Let M = (A1; : : : ;Am) 2 Kn�m, where the Ai are the m columns of M. Then the(�nitely generated) D�module represented by the matrixM isMod (M) =Def DA1 + � � �+DAm � Kn:Two matricesM1 andM2 are called module equivalent i� their represented modulesare equal:M1 �modM2 ()Def Mod (M1) = Mod (M2) :42



3.1. MATRIX EQUIVALENCE DEFINITIONS 43Note that this de�nition includes matrices with a di�erent number of columns.De�nition 3.1.2:Two matrices are called transformation equivalent: M1 �trafo M2 i� M1 can betransformed toM2 with a �nite number of transformation steps. A single transformationstep fromM toM0 is (assumingM 2 Kn�m) either1. the permutation of two columns i and j:M = (A1; : : : ;Ai�1;Ai;Ai+1; : : : ;Aj�1;Aj;Aj+1; : : : ;Am)and M0 = (A1; : : : ;Ai�1;Aj;Ai+1; : : : ;Aj�1;Ai;Aj+1; : : : ;Am);2. the transformation of two columns Ai and Aj (i 6= j) involving four scalarcoe�cients c1; c2; c3; c4 2 D satisfying c1c4 � c2c3 = 1:M = (A1; : : : ;Ai�1;Ai;Ai+1; : : : ;Aj�1;Aj;Aj+1; : : : ;Am)andM0 = (A1; : : : ;Ai�1; c1Ai + c2Aj;Ai+1; : : : ;Aj�1;c3Ai + c4Aj;Aj+1; : : : ;Am);3. the multiplication of a unit � in the ring D to column Ai:M = (A1; : : : ;Ai�1;Ai;Ai+1; : : : ;Am)and M0 = (A1; : : : ;Ai�1; �Ai;Ai+1; : : : ;Am);4. the insertion of a zero column1 before position i 2 Nm or as the last column:M = (A1; : : : ;Ai�1;Ai; : : : ;Am)and M0 = (A1; : : : ;Ai�1;0B@ 0...0 1CA ;Ai; : : : ;Am);or1. shorthand for a column with only zero entries



44 CHAPTER 3. EQUIVALENCE AND NORMAL FORMS OF MATRICES5. the deletion of a zero column at position i 2 Nm+1 :M = (A1; : : : ;Ai�1;0B@ 0...0 1CA ;Ai+1; : : : ;Am+1)and M0 = (A1; : : : ;Ai�1;Ai+1; : : : ;Am)with the convention that at least one column must remain.Remark:For Euclidean rings the second transformation can be replaced by the simplertransformation:the addition of the q�fold of a column Ai to a column Aj for q 2 D; i 6= j, whereM = (A1; : : : ;Ai�1;Ai;Ai+1; : : : ;Aj�1;Aj;Aj+1; : : : ;Am)and M0 = (A1; : : : ;Ai�1;Ai;Ai+1; : : : ;Aj�1;Aj + qAi;Aj+1; : : : ;Am):The Euclidean algorithm guarantees that this transformation can express themore general second transformation of de�nition 3.1.2. But this is not possiblein case of non�Euclidean rings. The proof of theorem 4.5.6 requires the moreexpressive transformation, and it seems very likely that a proof of this theoremwould not be possible without it.De�nition 3.1.3:Two matrices over K are matrix multiplication equivalent, M1 �mat M2, i� thereexist matrices T and U over D such thatM2 =M1T andM1 =M2U.Remarks:(1) This de�nition includes matrices of di�erent sizes. Obviously T and U have tohave the correct dimensions for the equalities to be true.(2) Another notion of the matrix multiplication de�nition requires the unimodular-ity of T and does not require a matrix U. But this notion excludes matrices ofdi�erent sizes therefore this de�nition would not be as general.(3) The de�nitions here are formulated as column equivalence. The analogue rowequivalence can be de�ned either directly (with a few modi�cations of the col-umn equivalence de�nitions) or based on the column equivalence de�nitions:Two matrices are module resp. transformation resp. matrix multiplication rowequivalent i� their transposed matrices are module resp. transformation resp.matrix multiplication column equivalent.



3.2. EQUIVALENCE OF THE DEFINITIONS 45(4) There is another notion of matrix equivalence. Again three di�erent notions ofequivalence can be de�ned. The module equivalence requires only that the rep-resented modules are isomorphic but not equal. The transformation equivalenceallows column and row transformations. The matrix multiplication demands theequalities:M2 = T1M1T2 andM1 = U1M2U2. The equivalence of those threeequivalence relations for Euclidean domains leads to the Smith normal form.It is not important for this thesis, so the details will not be given here.3.2 Equivalence of the de�nitions3.2.1 �trafo =) �modLemma 3.2.1:If two matrices over K are transformation equivalent, then they are module equivalent.Proof. We have to show that an application of a transformation of any type does notchange the generated module. This is trivial for the transformation of types 4 and 5because the zero module is the neutral element of the operation �+� in the moduleof D�modules. It is trivial for transformation of type 1 because �+� is commutative.It is trivial for transformation of type 3 because, for any D�unit � and any D�moduleM , we have �M =M .For transformations of type 2 (with the notation of de�nition 3.1.2), with the coef-�cients c1; c2; c3; c4 2 D and with Ai;Aj 2 Kn for i; j 2 Nm we haveD(c1Ai + c2Aj) � Dc1Ai +Dc2Aj � DAi +DAjand D(c3Ai + c4Aj) � Dc3Ai +Dc4Aj � DAi +DAj:On the other hand, let Bi = c1Ai+ c2Aj and Bj = c3Ai+ c4Aj. Since c1c4� c2c3 = 1,we have Ai = c4Bi � c2Bj and Aj = c1Bj � c3Bi. We concludeDAi = D(c4Bi � c2Bj) � Dc4Bi +Dc2Bj � DBi +DBjand DAj = D(c1Bj � c3Bi) � Dc1Bj +Dc3Bi � DBi +DBj:ThereforeDBi +DBj = DAi +DAj;which completes the proof.



46 CHAPTER 3. EQUIVALENCE AND NORMAL FORMS OF MATRICES3.2.2 �trafo =) �matLemma 3.2.2:If two matrices over K are transformation equivalent then they are matrix multiplicationequivalent.Proof. Let M 2 Kn�m. We relate every transformation type to an elementarymatrix with the intention that the e�ect of the multiplication with the relatedmatrix is identical to the transformation itself:� The permutation of two columns i and j relates to an identity matrix ofdegree m except the diagonal elements on positions (i; i) and (j; j), which arezero, and the elements on positions (i; j) and (j; i), which are one:0BBBBBBBBB@
i j1 0. . .i 0 1. . .j 1 0 . . .0 1

1CCCCCCCCCA:It is easy to see that multiplication with this matrix permutates Ai and Aj.� The scaled transformation of two columns relates to the identity matrix ofdegree m except for the four positions (i; i); (i; j); (j; i); (j; j), containing thescalar factors c1; c2; c3; c4:0BBBBBBBBB@
i j1 0. . .i c1 c2. . .j c3 c4 . . .0 1

1CCCCCCCCCA:Again it is easy to see that multiplication accomplishes the mentioned trans-formation.� The multiplication of the i-th column with the unit � relates to the identity



3.2. EQUIVALENCE OF THE DEFINITIONS 47matrix of degree m except that the i-th diagonal element is �:0BBBB@ i1 0. . .i � . . .0 1
1CCCCA:The multiplication with this matrix multiplies the i-th column with �.� The insertion of a zero column at position i relates to an identity matrix withan inserted zero column at position i. It is a matrix in Dm�m+1:0BBBBBB@

i� 1 i i+ 11 0. . .i� 1 1 0 0i 0 0 1 . . .0 1
1CCCCCCA:� The deletion of a zero column i relates to an identity matrix where the i-thcolumn is removed. It is a matrix in Dm�m�1:0BBBBBBBB@

i� 1 i1 0. . .i� 1 1 0i 0 0i+ 1 0 1 . . .0 1
1CCCCCCCCA:Because of the associativity of matrix multiplication, for any number of elementarymatrices Ti we have(: : : (M1T1) � � � � � Tz) =M1(T1 � � � � � Tz):It is easy to see that for any of the above transformation matrices there is anotherone which reverts its e�ect. The product of those inverse transformation matricesresults in U.Note that the elementary matrix relating to the �delete zero column� transformationmay not be applied in a general situation (like the other transformation matrices)but only if there is a zero column at the correct position. In this proof, however, westart with a valid transformation and this relates to a valid elementary matrix.



48 CHAPTER 3. EQUIVALENCE AND NORMAL FORMS OF MATRICES3.2.3 �mat () �modLemma 3.2.3:Two matrices over K are matrix equivalent if and only if they are module equivalent.Proof. �mat =) �modLet M1 = (A1; : : : ;Am1) 2 Kn�m1 and M2 = (B1; : : : ;Bm2) 2 Kn�m2 . Byassumption, for any i 2 Nm2 there are tij 2 D such that Bi = Pm1j=1 tijAj,hence Bi 2 DA1 + : : :DAm1 andDB1 + � � �+DBm2 � DA1 + � � �+DAm1:The same conclusion can be drawn for Ai 2 DB1 + : : :DBm2 . Hence,DB1 + � � �+DBm2 = DA1 + � � �+DAm1 :�mod =) �matLetM1 = (A1; : : : ;Am1) andM2 = (B1; : : : ;Bm2). By assumption,DA1 + � � �+DAm1 = DB1 + � � �+DBm2 :Therefore for any i 2 Nm2 ,Bi 2 DA1 + � � �+DAm1 ;hence, for any j 2 Nm1 ; i 2 Nm2 there exist tij 2 D such thatBi = m1Xj=1 tijAj; where i 2 Nm2and M2 = M1T with T = (tij)i2Nm2 ;j2Nm1 . On the other hand, we have forany i 2 Nm1 :Ai 2 DB1 + � � �+DBm2 ;hence, there exist uij 2 D for any i 2 Nm1 ; j 2 Nm2 such thatAi = m2Xj=1 uijBj; where i 2 Nm1 :With U = (uij)i2Nm1 ;j2Nm2 , we haveM1 =M2U.



3.2. EQUIVALENCE OF THE DEFINITIONS 493.2.4 �mat =) �trafoThis is by far the most di�cult part of the equivalence proof which in general fails ifthe ring does not have special properties. An important aid for the equivalence proofand many other things is the following de�nition.De�nition 3.2.4 (HERMITE normal form):Let D be an integral domain and K its quotient �eld. Let a reduce function according tode�nition 2.2.11 be �xed. Let S � K be a set of representatives for the classes of K�=D�where K� denotes the multiplicative group of K and D� the group of multiplicative unitsof D.A matrix M = (aij)i2Nn ;j2Nm 2 Kn�m is in HERMITE normal form i� there exists astrictly increasing map � : Nm ! Nn with the properties� 8i 2 Nn ; j 2 Nm ; i > �(j) =) aij = 0 (diagonal form)� 8j; k 2 Nm ; k > �(j) =) a�(j)k is reduced (see de�nition 2.2.11) modulo theideal generated by a�(j)j.� 8j 2 Nm , the (diagonal) element a�(j)j 2 S.This de�nition is a generalization of the well�known Hermite normal form of ma-trices over principal ideal rings, as for instance is given in [PZ93, p. 179]. The mainprerequisite for the generalization is the introduction of reduce functions in sec-tion 2.2.We can prove that every module equivalence class contains at most one matrix inHermite normal form. (It is a special case of the proposition 4.4.4.)The problem is to prove that every module equivalence class contains at least onematrix in Hermite normal form. If it is possible to show that for every matrix thereexists a chain of elementary transformations which results in a matrix in Hermitenormal form, we would have shown two things:� Every module equivalence class contains exactly one matrix in Hermite nor-mal form.� Two matrices which are module equivalent are also transformation equivalent.An important approach is the Gauss�Jordan algorithm. Most importantly, thisalgorithm only works with Euclidean rings. It can be modi�ed to work for principalideal domains, using the following lemma.Lemma 3.2.5:In a principal ideal domain the gcd of two elements always exists.Proof. Let D be a principal ideal domain and a; b 2 D. Consider the ideal aD+ bD.Every D�ideal is principal, therefore aD + bD has a principal generator c 2 D.aD � cD, hence a 2 cD and cja, likewise cjb. A d 2 D dividing both a and dgenerates an ideal dD � aD + bD = cD which implies djc.



50 CHAPTER 3. EQUIVALENCE AND NORMAL FORMS OF MATRICESIf there is an algorithm which �nds the principal generator for any given ideal thenthe proof of the lemma is constructive. There areGauss�Jordan algorithm versionswhich use the gcd instead of remainder division as in [KB79], [CC82], or [Hop94]. Inalgebraic number rings, �nding a principal generator of an ideal is generally not aneasy task; for good methods see [Hes96, pp. 75�77].[PZ93, p. 179] proves the existence of the Hermite normal form in principal idealdomains with a di�erent constructive method.The results of the next chapter will provide still another proof of theorem 4.5.6,which is based on the more general pseudomatrices. This proof is constructive anduses methods for pseudomatrices.3.2.5 SummaryThe proven statements about the three matrix equivalence de�nitions are summa-rized in the following picture:
�mat

�trafo
�mod-always� always������	only forprincipal idealdomains�������always @@@@@@Ralways

The question is still open if the equivalence of the matrix equivalence de�nitionsholds for more general rings. One hypothesis is that this is the case for Dedekinddomains but not for integral domains although there is neither proof nor disproof sofar.



Chapter 4The theory of pseudomatrices
Let D be an integral domain (a commutative unital ring without nontrivial zerodivisors) and K its quotient �eld. Finitely generated D�modules in Kn (where n 2 N)can be represented by matrices over D with n rows. This was the subject of the lastchapter. The equivalence of the three equivalence relations for matrices and theexistence of the normal form can only be shown if D is a principal ideal domain.This chapter generalizes the concept of D�matrices to D�pseudomatrices. The de�-nitions of the three matrix equivalence relations for pseudomatrices and the normalform are an analogue of those for matrices. The advantage of the generalization isthat equivalence of the three equivalence relations and the existence of the normalform can not only be shown for principal ideal domains, but for the more generalDedekind rings. Although the complete theoretical solution can only be obtainedfor Dedekind rings, de�nitions and propositions in the more general context ofintegral domains will be given, where possible.The idea of pseudomatrices can be found in [O'M63, �81:3]. This theorem proves theexistence of a �nite sum of products of an ideal and an module as a replacementfor integral bases which do not exist in general in the case of Dedekind rings. Thissum was named pseudobasis in [Coh96] by Henri Cohen. Matrices represent bases of�nitely generated modules � analogously pseudomatrices represent pseudobases.4.1 The de�nition of pseudomatricesDe�nition 4.1.1:Let D be an integral domain and K = Q(D) its quotient �eld. Let n;m 2 N andA = (A1; : : : ;Am) = 0B@ a11 : : : a1m... ...an1 : : : anm 1CAbe an (n�m)�matrix over K with column vectors A1; : : : ;Am in Kn. 51



52 CHAPTER 4. THE THEORY OF PSEUDOMATRICESLet a1; : : : ; am be m fractional D�ideals1. Then the scheme formed byM = � a1 : : : amA � = � a1 : : : amA1 : : : Am � = 266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775is called a pseudomatrix over D with n rows and m columns.a1; : : : ; am are called the coe�cient ideals of M.The notion of pseudomatrices was introduced in [Coh96, Th. 2.5]. Analogous to thede�nition of the operator Mod for matrices in de�nition 3.1.1 we de�neDe�nition 4.1.2:Let D be an integral domain and letM = � a1 : : : amA1 : : : Am �be a pseudomatrix over D with n rows. Then the D�moduleMod (M) = mXi=1 aiAi � Knis called the module generated by the pseudomatrix M.For every �nitely generated D�module in Kn there exists a pseudomatrix whichrepresents it. Let A1; : : : ;Am be the m generators of the module M . ThenMod�� 1D : : : 1DA1 : : : Am �� =M:(1D is an abbreviation for the D�ideal generated by 1.)De�nition 4.1.3:Two pseudomatricesM and N over an integral domain D are calledmodule equivalent(written M �mod N) i� Mod (M) = Mod (N).It is easy to see that this an equivalence relation. A very important aim is to de�neand to construct canonical representatives of the equivalence classes of the relation�mod.The set of matrices over K can be considered a subset of the set of pseudomatricesoverD via the identi�cation mapA 7! � 1D : : : 1DA �, whereA is a matrix over K.This makes sense because the modules which are represented by A andM are equal:Mod (A) = Mod (M). Therefore the concept of the representation of D�modules inKn by pseudomatrices is a generalization of the concept of the representation bymatrices.1. The zero ideal is not a fractional D�ideal by convention of de�nition 1.0.1 .



4.2. TRANSFORMATIONS ON PSEUDOMATRICES 53De�nition 4.1.4:A pseudomatrix 266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775 is called integral if for every i 2 Nn and j 2 Nmthe ideal aijaj is an integral ideal.Lemma 4.1.5:A pseudomatrix M is integral i� Mod (M) � Dn.4.2 Transformations on pseudomatricesTransformations on pseudomatrices are de�ned in analogy to transformations on ma-trices. Most importantly, an application of a transformation should not change themodule generated by the pseudomatrix. This is proved in the subsequent proposi-tion 4.2.3.De�nition 4.2.1:Let M and N be two pseudomatrices of the same number n of rows. They are calledtransformation equivalent (written M �trafo N) i� N can be produced from M bya �nite number of applications of elementary transformations which are:SWAP: Swaps the columns i and j of M:�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : aj : : : ai : : :: : : Aj : : : Ai : : :� :PUSH FACTOR:This transformation involves only one column and its ideal. The nonzero factore 2 K is pushed from the ideal ai (ai is divided by e) to the column Ai (Ai ismultiplied by e):�: : : ai : : :: : : Ai : : :�! �: : : aie : : :: : : eAi : : :� :TWO SCALED:This transformation changes two columns without modifying the coe�cient ide-als: �: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : ai : : : aj : : :: : : Bi : : : Bj : : :� ;where Bi;Bj 2 Kn and c1; c2; c3; c4 2 K satisfyc1; c4 2 D; c2ai � aj; c3aj � ai; ����c1 c2c3 c4���� = 1;Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:



54 CHAPTER 4. THE THEORY OF PSEUDOMATRICESCOLLECT:This transformation collects the ideals of two columns of M:�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : 1D : : : aiaj : : :: : : Bi : : : Bj : : :� ;where Bi;Bj 2 Kn and c1; c2; c3; c4 2 K satisfyc1 2 ai; c2 2 aj; c3aj � D; c4ai � D;����c1 c2c3 c4���� = 1; Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:SPREAD:This is the inverse transformation of the COLLECT transformation. It may only beapplied if the coe�cient ideal of the i-th column is D:�: : : 1D : : : aj : : :: : : Ai : : : Aj : : :�! �: : : bi : : : bj : : :: : : Bi : : : Bj : : :� ;where bi and bj are fractional D�ideals, Bi;Bj 2 Kn, and c1; c2; c3; c4 2 K satisfybibj = aj; c1bi � D; c2 2 bj; c3bj � D; c4 2 bi;����c1 c2c3 c4���� = 1; Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:INSERT ZERO COLUMN:This transformation appends a zero column together with an arbitrary fractionalideal to M:�a1 : : : amA1 : : : Am�! 26664a1 : : : am aA1 : : : Am 0B@ 0...0 1CA37775where a is an arbitrary fractional D�ideal.DELETE ZERO COLUMN:This transformation deletes the last column of M, if it is a zero column, togetherwith its (arbitrary) coe�cient ideal:26664a1 : : : am aA1 : : : Am 0B@ 0...0 1CA37775! �a1 : : : amA1 : : : Am�for any fractional D�ideal a. This transformation must not be applied if M hasonly one column.



4.2. TRANSFORMATIONS ON PSEUDOMATRICES 55The actual de�nition of pseudomatrices forbids pseudomatrices with no columnswhich is just one possible convention. To deal with pseudomatrices whose matrixcontains only zero entries (as counterpart of the zero module which is representedby it) must be arti�cial at some point � either in this de�nition of transformationsor in all statements about pseudomatrices, where the pseudomatrix with no columnsat all would have be dealt with as a special case.Other forms of the de�nition of elementary transformations would have been possible.Here, the transformations are chosen for their simplicity, while still being expressiveand reasonable, even for non�Dedekind rings.Lemma 4.2.2:Let D be an integral domain. For every transformation of pseudomatrices over D, thereexists an inverse transformation.Proof. Obviously Insert zero column and Delete zero column are inverse toeach other. The Swap transformation is inverse to itself.Let the Two scaled transformation be described as�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : ai : : : aj : : :: : : Bi : : : Bj : : :� ;where Bi;Bj 2 Kn and c1; c2; c3; c4 2 K satisfyc1; c4 2 D; c2ai � aj; c3aj � ai; ����c1 c2c3 c4���� = 1;Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:The inverse transformation is a Two scaled transformation which is described as�: : : ai : : : aj : : :: : : Bi : : : Bj : : :�! �: : : ai : : : aj : : :: : : Ai : : : Aj : : :� ;where d1 = c4; d2 = �c2;d3 = �c3; d4 = c1; �d1 d2d3 d4� = �c1 c2c3 c4��1; Ai = d1Bi + d2Bj;Aj = d3Bi + d4Bj:We can concludec4 2 D =) d1 2 D;c2ai � aj =) d2ai � aj;c3aj � ai =) d3aj � ai;c1 2 D =) d4 2 D:The Collect transformation with the parameters c1; c2; c3; c4 is inverse to theSpread transformation with the parameters c4;�c2;�c3; c1. These parameters can



56 CHAPTER 4. THE THEORY OF PSEUDOMATRICESbe shown to satisfy the properties required by the Spread transformation analo-gously to the Two scaled transformation.The Spread transformation is inverse to a Collect transformation in a similarway.Proposition 4.2.3:Let M and N be two pseudomatrices over an integral domain D with the same numberof rows. If they are transformation equivalent, then they are module equivalent:M �trafo N =) M �mod N:Proof. We have to show that the transformations Swap, Push factor, Twoscaled, Collect, Spread, Insert zero column, and Delete zero col-umn of de�nition 4.2.1 do not change the represented module of a pseudomatrix Mwith n rows.It is trivial for the Swap and Push factor transformations.Let A be the zero vector of length n, a any fractional D�ideal. Then aA is the zeromodule. Therefore the Insert zero column and Delete zero column do notchange the represented module.Let a Two scaled transformation be described by�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : ai : : : aj : : :: : : Bi : : : Bj : : :� ;where Bi;Bj 2 Kn and c1; c2; c3; c4 2 K satisfyc1; c4 2 D; c2ai � aj; c3aj � ai; ����c1 c2c3 c4���� = 1;Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:We have to show thataiAi + ajAj = aiBi + ajBj:By lemma 4.2.2 it su�ces to show thataiBi + ajBj � aiAi + ajAj:We can showaiBi = ai(c1Ai + c2Aj) � aic1Ai + aic2Aj � aiAi + ajAjand similarly ajBj � aiAi + ajAj.Let a Collect transformation be described by�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : 1D : : : aiaj : : :: : : Bi : : : Bj : : :� ;



4.2. TRANSFORMATIONS ON PSEUDOMATRICES 57where Bi;Bj 2 Kn and c1; c2; c3; c4 2 K satisfyc1 2 ai; c2 2 aj; c3aj � D; c4ai � D;����c1 c2c3 c4���� = 1; Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:We have to show thataiAi + ajAj = DBi + aiajBj:By lemma 4.2.2 it su�ces to show thatDBi + aiajBj � aiAi + ajAj:We havec1 2 ai =) c1Ai 2 aiAic2 2 aj =) c2Aj 2 ajAj=) DBi = D(c1Ai + c2Aj) � aiAi + ajAjand c3aj 2 D =) c3aiajAi 2 aiAic4ai 2 D =) c4aiajAj 2 ajAj=) aiajBi = aiaj(c3Ai + c4Aj) � aiAi + ajAj:which proves the claim for the Collect transformation.Likewise, it can be proved that the Spread transformation does not change therepresented module.4.2.1 Existence of parameters for the transformationsLet D be a Dedekind ring. We ask the question whether there exist parameters forevery elementary transformation type of de�nition 4.2.1 such that the transformationmay be applied.Obviously, Insert zero column can always be applied and Delete zero col-umn only if the last column is indeed zero. It is easy to see that parameters are quitearbitrary for the transformations Push factor, Swap, Two Scaled.The Spread transformation cannot always be applied because one of the coe�cientideals of M must be D. From the proposition 4.2.4 below and the existence of theinverse transformation in lemma 4.2.2 it follows that if one coe�cient ideal of Mis indeed 1D, parameters can be found to apply the Spread transformation. Thisleaves us with the task of showing the following proposition:



58 CHAPTER 4. THE THEORY OF PSEUDOMATRICESProposition 4.2.4:Let D be a DEDEKIND ring. For every two fractional D�ideals ai and aj, it is possible to�nd c1 2 ai, c2 2 aj, c3 2 a�1j , and c4 2 a�1i such that����c1 c2c3 c4���� = 1:These coe�cients satisfy the requirements of a COLLECT transformation of de�nition 4.2.1.If D is a maximal order of a number �eld, algorithm 1.8.5 gives a constructive proof.If D is not an algebraic number ring, proposition 1.8.4 proves the existence.4.2.2 Special transformationsThere are other important transformations besides the elementary transformations.General Two Columns:This transformation changes two columns �aiAi� and �ajAj� ofM while the restof the matrix stays constant:�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : bi : : : bj : : :: : : Bi : : : Bj : : :� ;where ai and aj must be invertible and where bi and bj are fractionalD�ideals,Bi;Bj 2 Kn, and c1; c2; c3; c4 2 K satisfyc1bi � ai; c2bi � aj; c3bj � ai; c4bj � aj;e := ����c1 c2c3 c4���� = c1c4 � c2c3 6= 0; aiaj = ebibj;Bi = c1Ai + c2Aj; Bj = c3Ai + c4Aj:Unimodular:Special case of General two columns where e = 1. It is otherwise iden-tical.The Swap, Push factor, Collect, Spread, Unimodular, and Two scaledtransformations are all special cases of theGeneral two columns transformation.The e�ect of a General two columns transformation can also be obtained by anapplication of a Unimodular and a Push factor transformation.The question is if the General two columns transformation can be based on theelementary transformations. It can be answered positively for Dedekind rings:Proposition 4.2.5:Let D be a DEDEKIND ring. Any one application of the UNIMODULAR transformation canbe reduced to one COLLECT, one SPREAD, and one TWO SCALED transformation applicationin this order.



4.2. TRANSFORMATIONS ON PSEUDOMATRICES 59Proof. Since D is a Dedekind ring every ideal is invertible. Let the Unimodulartransformation be described by�BiBj� = �c1 c2c3 c4��AiAj�; ����c1 c2c3 c4���� = 1; aiaj = bibj;c1 2 aib�1i ; c2 2 ajb�1i ; c3 2 aib�1j ; c4 2 ajb�1j :From proposition 4.2.4, it is clear that there are d1, d2, d3, and d4 such that����d1 d2d3 d4���� = 1; d1 2 ai; d2 2 aj; d3 2 a�1j ; d4 2 a�1i :This transforms�: : : ai : : : aj : : :: : : Ai : : : Aj : : :� =) �: : : D : : : aiaj : : :: : : Ci : : : Cj : : :� ;where �CiCj� = �d1 d2d3 d4��AiAj�:As an easy deduction of proposition 4.2.4 (because unimodular matrices can beinverted), it is clear that there exists a Spread transformation with����e1 e2e3 e4���� = 1; e1 2 b�1i ; e2 2 bj; e3 2 a�1j ; e4 2 aiwhich transforms�: : : D : : : aiaj : : :: : : Ci : : : Cj : : :� =) �: : : bi : : : bj : : :: : : Di : : : Dj : : :� ;where �DiDj� = �e1 e2e3 e4��CiCj�:These two transformations applied together form a transformation�: : : ai : : : aj : : :: : : Ai : : : Aj : : :� =) �: : : bi : : : bj : : :: : : Di : : : Dj : : :� ;where �DiDj� = �f1 f2f3 f4��AiAj� and �f1 f2f3 f4� = �e1 e2e3 e4��d1 d2d3 d4�:For this transformation we can check����f1 f2f3 f4���� = 1; aiaj = bibj;f1 2 aib�1i ; f2 2 ajb�1i ; f3 2 aib�1j ; f4 2 ajb�1j :



60 CHAPTER 4. THE THEORY OF PSEUDOMATRICESThe coe�cients�g1 g2g3 g4� = �c1 c2c3 c4�� f4 �f2�f3 f1 �satisfy the requirements for the Matrix Two Scaled transformation sinceg1 = c1f4 � c2f3 2 ajb�1i aib�1j = 1Dg2 = �c1f2 + c2f1 2 aiajb�2i = b�1i bjg3 = c3f4 � c4f3 2 aiajb�2j = b�1j big4 = �c3f2 � c4f1 2 ajb�1i aib�1j = 1D:Another transformation is the following:Add q-times:This transformation adds the q�fold of Ai to Aj:�: : : ai : : : aj : : :: : : Ai : : : Aj : : :�! �: : : ai : : : aj : : :: : : Ai : : : Aj + qAi : : :� ;where q 2 K satis�es qaj � ai.This transformation is a special case of the Two scaled transformation. The ques-tion is whether the Two scaled transformation can be seen as a series of othertransformations. If D were a Euclidean ring, it would be possible to determine anumber of Add q�times transformations in a process similar to the Euclidean algo-rithm which is equivalent to a Two scaled transformation. Since we are interestedin non�Euclidean rings, the Two scaled transformation is used as an elementarytransformation and the Add q�times transformation is no longer important.4.2.3 Special problems for non�DEDEKIND ringsIn the General two columns transformation in subsection 4.2.2 the ideals aiand aj requested to be invertible? The answer is that the transformation should atleast qualify the statements of lemma 4.2.2 and proposition 4.2.3, i.e. an applica-tion of it should be reversible and should not change the module generated by thepseudomatrix.We assume the inverse transformation to be a General two columns transfor-mation:�: : : bi : : : bj : : :: : : Bi : : : Bj : : :�! �: : : ai : : : aj : : :: : : Ai : : : Aj : : :� ;where d1 := c4e ; d2 := �c2e ; d3 := �c3e ; d4 := c1eAi = d1Bi + d2Bj; Aj = d3Bi + d4Bj:



4.3. MATRIX MULTIPLICATION EQUIVALENCE DEFINITION 61We haved1d4 � d2d3 = 1e 6= 0; and aiaj 1e = bibj:From c4bj � aj (hence c4aibj � aiaj) and ebibj = aiaj, we conclude c4aibj � ebibj.But unless the ideal bj is invertible, we cannot conclude d4ai � bi, which we wouldneed for a valid General two columns transformation.We only need the following simple property:Lemma 4.2.6:Let D be an integral domain and a1 and a2 two fractional ideals. Then a := a1a2 isinvertible i� a1 and a2 are invertible.Proof. If a1 and a2 are invertible, then a0 := a�12 a�11 is the inverse of a.Let a�1 be the inverse of a. Then a0 := a�1a2 is the inverse of a1 sincea0a1 = a�1a2a1 = 1D;and likewise a2 is invertible.Since we require the ideals ai and aj to be invertible, we have proved that the Gen-eral two columns transformation is reversible and does not change the generatedmodule.
4.3 Matrix multiplication equivalence de�nitionThere is another important equivalence relation for pseudomatrices.De�nition 4.3.1:Let D be an integral domain, letM = � a1 : : : amA � and N = � b1 : : : blB �be two pseudomatrices with n rows. ThenM and N are matrix multiplication equiva-lent,M �mat N, i� there exists a matrix T = (tij)i;j 2 Km�l such that B = AT and forevery i 2 Nm ; j 2 N l we have tijbj � ai, and there exists a matrix U = (uij)i;j 2 Kl�msuch that A = BU and for every i 2 N l ; j 2 Nm we have uijaj � bi.Proposition 4.3.2:Two pseudomatrices are module equivalent i� they are matrix equivalent.



62 CHAPTER 4. THE THEORY OF PSEUDOMATRICESProof. =)Assume� a1 : : : amA1 : : : Am � �mod � b1 : : : blB1 : : : Bl � :For every j 2 N l we have bjBj � Pmi=1 aiAi. Hence there exist tij 2 K such thattijbj � ai and Bj =Pmi=1 tijAi. The matrix T = �tij�i2Nm ;j2Nl satis�es B = AT. Onthe other hand there exist uij 2 K such that uijaj � bi and for every j 2 Nm wehave Aj = Pli=1 uijBi. With U = �uij�i2Nl ;j2Nm we have A = BU which completesone direction of the proof.(=Let the two pseudomatrices be matrix multiplication equivalent. Then we have T =(tij)i2Nj 2 Km�l such that B = AT and for every i 2 Nm ; j 2 N l we have tijbj � ai.It follows thatbjBj = mXi=1 tijbjAi 2 mXi=1 aiAi and lXj=1 bjBj � mXi=1 aiAi:We have U = (uij)i2Nl ;j2Nm 2 Kl�m such that A = BU, and for every i 2 N l ; j 2 Nmwe have uijaj � bi. It follows thatajAj = lXi=1 uijajBi 2 lXi=1 biBi and mXj=1 ajAj � lXi=1 biBi;which completes the proof.
4.4 Normal forms of pseudomatricesWe want to have a description of �nitely generated modules by pseudomatrices.Since di�erent pseudomatrices may represent the same module, we are interestedin how to decide if two pseudomatrices are module equivalent. Transformations ofpseudomatrices approach the algorithmic solution to this question.In the last section, several questions were left open. If two pseudomatrices are mod-ule (or equivalently matrix multiplication) equivalent, are they also transformationequivalent? In other words, for any two pseudomatrices which represent the same�nitely generated module, does there always exist a course of transformations whichtransforms one to the other? This question becomes easier if we �x one pseudomatrixin each class of pseudomatrices (regarding the module equivalence) � the normalform.Once de�ned, the normal form must satisfy the following properties to be useful atall:



4.4. NORMAL FORMS OF PSEUDOMATRICES 63� Uniqueness: If two module equivalent pseudomatrices are in the normal form,then they are equal.� Existence: For any given pseudomatrix, there exists a pseudomatrix in thenormal form which is module equivalent to the given pseudomatrix.� Constructability: For any given pseudomatrix, there exists a course of trans-formations which transforms it to a pseudomatrix in normal form.If these properties hold, it follows immediately that two module equivalent pseudo-matrices are also transformation equivalent.4.4.1 The de�nition of the COHEN�HERMITE normal formThe following de�nition is based on the paper [Coh96]. Henri Cohen calls it Her-mite normal form there because it can be seen as a generalization of the Hermitenormal form. However it includes conventions which are not the only ones possible.[BP91] use a di�erent convention (although this is not explicitly stated there, it is aconsequence of the given algorithm).De�nition 4.4.1:A pseudomatrix over a DEDEKIND ring DM = 266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775is in COHEN�HERMITE normal form (CHNF) regarding a �xed reduce function (as in de�ni-tion 2.2.11) if there exists a strictly increasing map � : Nm ! Nn (therefore n � m � 1)with the properties:1. 8i 2 Nn ; j 2 Nm ; i > �(j) =) aij = 0 (triangular form);2. 8i 2 Nm ; a�(i)i = 1 (ones on the diagonal); and3. 8i; j 2 Nm ; j > i =) a�(i)j is reduced modulo the ideal aiaj .By abuse of language we will say �triangular form� if we want to point to the propertyalk = 0 for k 2 Nm and l 2 Nn n Nk . We will call the entries a�(k)k = 1 for k 2 Nm�diagonal entries�.



64 CHAPTER 4. THE THEORY OF PSEUDOMATRICESThe �rst two properties describe the form of the CHNF pseudomatrix as2666666666666666666666666664

0BBBBBBBBBBBBBBBBBBBBBBB@

a1 : : : am�1 ama11 a1;m�1 a1m... ... ...a�(1)�1;11 . . . ... ...1 a�(m�1);m... ...0 a�(m)�1;m1...0 0

1CCCCCCCCCCCCCCCCCCCCCCCA

3777777777777777777777777775
: (4.4.1)

The last property implies that a reduce function according to de�nition 2.2.11 mustbe �xed to de�ne the CHNF. For di�erent reduce functions, di�erent pseudomatricesare in CHNF. From now on let a reduce function be �xed.To prove the uniqueness of the CHNF, we need the following lemmas:Lemma 4.4.2:A pseudomatrix M = � a1 : : : amA1 : : : Am � in CHNF is a pseudobasis for Mod (M). Thismeans that there is no pseudomatrix N with fewer columns than M and Mod (N) =Mod (M).Proof. This is immediate because of the triangular form of the CHNF, which impliesthat for no i 2 Nm we have Ai 2Pj2Nmnfig ajAj.Lemma 4.4.3:Let the i-th row ideal of the pseudomatrix266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775be the ideal Pmj=1 aijaj. Letpri : Kn � K0B@a1...an1CA 7! ai



4.4. NORMAL FORMS OF PSEUDOMATRICES 65be the epimorphism to the i-th component of a vector.Then the i-th row ideal of a pseudomatrix M is equal to the ideal pri(Mod (M)).Proof. Let c 2 pri(Mod (M)). Then there exists an A 2 Mod (M) with c = pri(A).A can be represented with aj 2 aj for j 2 Nn as A =Pnj=1 ajAj. We concludec = nXj=1 ajaij 2 mXj=1 aijaj:Let c 2 Pmj=1 aijaj. Then there exist aj 2 aj for j 2 Nn such that c = Pnj=1 ajaij.Thereforec = nXj=1 ajpri(Aj) = pri( nXj=1 ajAj) 2 pri(Mod (M)):Proposition 4.4.4 (Uniqueness of the CHNF):If two module equivalent pseudomatrices are in CHNF they are equal.Proof. Let M and N be two module equivalent pseudomatrices in CHNF.By de�nition 4.1.3, M and N must have the same number of rows to be moduleequivalent. From lemma 4.4.2 it follows that they have to have the same number ofcolumns. By lemma 4.4.3, for every row i, the i-th row ideal of M and N must beequal.We use induction on the number m of columns of the pseudomatrix M.Induction start. Let m=1 and
M =

26666666666664
0BBBBBBBBB@

a1a11...a�(1)�1;110...0
1CCCCCCCCCA
37777777777775 ;N = 266640@ b1b11...bn11A

37775 :
Since all row ideals of M and N are equal, it follows that for �(1) + 1 � i � n wehave bi1 = 0 and b�(1)1 6= 0. N is in CHNF, hence b�(1)1 = 1 and a1 = b1. Again bythe equality of the row ideals, we conclude for i 2 N�(1) that ai1 = bi1�i, where the�i are units of D. As M and N are module equivalent, all �i are equal in pairs. Buta�(1)1 = b�(1)1 = 1, therefore ��(1) = 1. We conclude that ai1 = bi1 for all i 2 Nn ,which �nishes the induction start.



66 CHAPTER 4. THE THEORY OF PSEUDOMATRICESInduction step. Let the notations of M be as in (4.4.1) and the notations of Nlikewise with bij in place of aij and bij in place of aij.LetM0 resp. N0 be the pseudomatricesM resp. N after removing their last columns.By the de�nition of the CHNF, it is clear that M0 and N0 are also in CHNF.The rows �(m� 1)+ 1; : : : ; n of the pseudomatrix M0 contain only zero entries. Thelast column ofM contains nonzero elements at most at positions �(m�1)+1; : : : ; n,of which at least the entry at position �(m) equals one.Therefore Mod (M0) contains all the elements of Mod (M) which have zero entriesat positions �(m� 1) + 1; : : : ; n. The same is true for Mod (N0) and Mod (N). SinceMod (M) = Mod (N), this givesMod (M0) = Mod (N0) :By the induction assumption, we conclude thatM0 = N0: (4.4.2)Since all row ideals of M and N are equal (lemma 4.4.3) and the diagonal entries ofa CHNF satisfy a�(m)m = 1, b�(m)m = 1 (as in the argumentation in the inductionstart) we yield am = bm.It is left to show akm = bkm for k 2 Nn . By de�nition, for the entries at positionk > �(m) we simply have akm = bkm = 0. The diagonal entry satis�es a�(m)m =b�(m)m = 1. For the following conclusions, let k iterate over the remaining entries.Iteration of k from �(m)� 1 to 1. Assume that ak+1;m = bk+1;m, : : : ,a�(m)�1;m =b�(m)�1;m has already been shown and also assume akm 6= bkm. Let
C = Am � Bm = 0BBBBBBB@

c1 = a1m � b1m...ck = akm � bkm0...0
1CCCCCCCA (4.4.3)

be the di�erence vector of the last columns Am of M and Bm of N. We have theformulaamC = am(Am � Bm) � amAm + amBm � Mod (M) : (4.4.4)Consider two cases: the index k might or might not be in the image set �(Nm) ofM.In other words, I check if there exists a column index r such that akr = 1 or not.



4.4. NORMAL FORMS OF PSEUDOMATRICES 67Case 1: k 2 �(Nm)Let r be the column number with �(r) = k. We know that the matrices ofboth M and N have the entry one at position (k; r).Let Ar be the r�th column of the matrix of M. Ar has a one at positionk and zeros at the positions with a higher index than k. C has the entryck = akm � bkm at position k and zeros at the positions with higher indexthan k. Only the summand arAr of the sum Mod (M) =Pmi=1 aiAi could givea contribution to the entry of C at position k. More precisely:amck � ar: (4.4.5)On the other hand, the de�nition of the CHNF requires both akm and bkm tobe reduced modulo the ideal aram , which is the third property.But by proposition 2.2.12 and formula (4.4.5), we obtain akm = bkm which isa contradiction to the above assumption.Case 2: k 62 �(Nm)Let l be the smallest index with k < l � n and l = �(r). Again considerthe di�erence vector of formula (4.4.4). But how should any element of amCbe expressed as a linear combination Mod (M) =Pi=1maiAi? The columnsA1; : : : ;Ar�1 have zero at position k and can not contribute to a possibleck 6= 0. The columns Ar; : : : ;Am are not zero at position k but they are alsononzero at positions > k. The triangular form of the matrix of M guaranteesthat any nonzero element ofPi=rmaiAi has at least one nonzero entry amongthe positions �(r); : : : ; �(m). It follows that this case can not occur under theassumption ck 6= 0.Both cases lead to a contradiction, therefore we have shown akm = bkm for any k 2Nn . Together with equation (4.4.2) we obtain M = N, which �nishes the inductionstep.Remark:The question arises if there are other possible conventions for a normal form ofa pseudomatrix except the one given in De�nition 4.4.1.The triangular form is the crucial factor to guarantee uniqueness, existence, andconstructability. As argumented in many papers about the integer HNF, it hasno practical value to de�ne a normal form of integer matrices which is not atriangular form.Consider the matrix equivalent to a given matrix where the sum of the vectornorms of the columns is minimal. The construction is very hard, assumablya NP�complete problem. (The problem is related to the problem of �nding aunique Steinitz form, see section 4.6.)For triangular forms, the normal form convention includes two separate points:norming the diagonal entries and norming the non�diagonal entries.



68 CHAPTER 4. THE THEORY OF PSEUDOMATRICESIn de�nition 4.4.1, the freedom to choose a reduce function implies the freedomfor any convention of the non�diagonal elements. For algebraic number �elds,at least 2 conventions are useful. One demands non�diagonal entries to have arepresentation with the least possible positive coe�cients. The other one de-mands non�diagonal entries to have a representation with coe�cients with theleast absolute value. See section 2.3.According to de�nition 4.4.1, the diagonal entries are one but could be anyfractional algebraic number while the coe�cient ideal of its column is dividedby the same algebraic number. From the theoretical point of view this one is thenatural choice, and it is satisfying from the algorithmic point of view since itis very easy to transform a normal form with ones on the diagonal to a normalform with any other convention.Dr. Claus Fieker (in private conversation) pointed to the fact that, for certainapplications using the normal form as a basis of a number �eld lattice, otherconventions for the diagonal entries might be more useful. It is not be dealt withhere since it is more a property of the algorithms using the normal form than afeature of the normal form itself.4.5 The existence of the normal form4.5.1 The COHEN algorithmLet D be a Dedekind ring. Then the following algorithm describes the constructionof a pseudomatrix in CHNF which is (transformation) equivalent to a given arbitrarypseudomatrix.From the theoretical point of view this algorithm serves two purposes:� The explicit computation of the CHNF in maximal orders of algebraic num-ber �elds over Q . It is based on the explicit algorithms 1.8.8 in step 9 andalgorithm 2.3.1 as an implementation of a reduce function de�ned in de�-nition 2.2.11 in step 13. And of course on the implementations of addition,multiplication, and inversion of algebraic numbers and ideals in maximal or-ders over algebraic number �elds.� The existence proof inDedekind rings based on the existence proof of propo-sition 1.8.7 in step 9 and of proposition 2.2.12 in step 13.Algorithm 4.5.1: CHNF computation, COHENInput: Pseudomatrix M = � a1 : : : amA1 : : : Am � = 266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775.Output: Pseudomatrix M0 = � b1 : : : brB1 : : : Br � in CHNF, the rank r, the map �, atransformation matrix T with (A1; : : : ;Am)T = (0; : : : ; 0;B1; : : : ;Br).



4.5. THE EXISTENCE OF THE NORMAL FORM 69Steps:1: i := m;T := Idm 2 Km�m2: Loop k := n; : : : ; 13: Try to select a j 2 N i such that akj 6= 0. If not possible, goto next loop cyclein step 2.4: If j 6= i swap columns �aiAi� with �ajAj� of M and columns i and j (Ti andTj) of T. This is a SWAP transformation.5: Set Ai := 1akiAi, ai := akiai, Ti := 1akiTi. This is an application of the PUSHFACTOR transformation.6: Loop j := 1; : : : ; i� 1.7: If akj = 0 goto next loop cycle in step 6.8: d := akjaj + ai.9: Find u 2 ajd�1 and v 2 aid�1 such that akju+ v = 1 (algorithm 1.8.8).10: Set Aj := Aj�akjAi, Ai := uAj+vAi, Tj := Tj�akjTi, Ti := uTj+vTi.Set aj := ajaid�1, ai := d. This is an application of the UNIMODULARtransformation.11: Goto next loop cycle in step 6.12: Loop j := i + 1; : : : ; m.13: Reduce akj modulo the ideal aiaj to a.14: If akj 6= a then set q = a� akj, Aj := Aj + qAi, Tj := Tj + qTi. This isan application of the ADD Q-TIMES transformation.15: Goto next loop cycle in step 12.16: Set �̂(i) := k, i := i� 1.17: Goto next loop cycle in step 2.18: Delete all zero columns of M.19: The rank of the pseudomatrix is r := n� i.20: Set �(j) := �̂(j + i) for all j = 1; : : : ; r.21: End.This algorithm is a generalization (for modules of not necessarily full rank) on thebasis of the algorithm described in [Coh96, Algorithm 2.6].Proof. Since M is subject to valid transformations, proposition 4.2.3 ensures thatMod (M) is constant in the course of the algorithm.Steps 4 and 5 guarantee the entry at position (i; k) of M to be 1.The loop in step 6 eliminates all entries of the k-th row at columns 1; : : : ; i� 1, andfrom proposition 1.8.7, it follows that parameters can be found.The loop in step 12 reduces the entries of the k-th row at columns i + 1; : : : ; m tosatisfy the third property in the de�nition of the CHNF, by proposition 2.2.12.



70 CHAPTER 4. THE THEORY OF PSEUDOMATRICESRemarks:(1) The freedom to choose a pivot entry in step 3 of the algorithm is the main factorto increase the e�ciency of the algorithm with good heuristics. Any nonzeroentry would do but the problem is that coe�cient growth slows down furtherarithmetic computation. Therefore it is important to choose a pivot entry whichcan be expected to produce the least coe�cient growth. A suggestion for areasonable heuristics is:� The pivot entry should be �small� since it directly a�ects the coe�cientgrowth. For the notion of size, see 2.3.1, where the 1�norm of the coe�cientvector representing the pivot entry is su�cient here. This should be theprimary heuristics.� The combined size of the entries of the pivot column, called column sizehere, also a�ects the coe�cient growth. The sum of the 1�vector norms ofthe representations of the entries of the pivot column is a good measure.This should be the secondary heuristics.� An interesting re�nement is to accept a little larger pivot size (primaryheuristics) for a considerable smaller column size (secondary heuristics).� The secondary heuristics can be re�ned further: A little larger column sizecan be acceptable if the column has more zero entries.(2) For integer matrices, a much more extensive approach, called preview stra-tegy, is described in [Hop94, section 3.4]. At this stage of the development itis not a hopeful approach for pseudomatrices over Dedekind domains. IntegerHNF computation is very fast, the only trouble is the coe�cient explosion. Sothe gap between HNF computation �at a glance� and �to di�cult to compute�is relatively large. CHNF computation for pseudomatrices over algebraic num-ber �elds is slow since the underlying arithmetics is for algebraic numbers, notintegers! Therefore only normal forms of reasonably sized pseudomatrices willbe computable at all. The actual gain by a clever heuristics is therefore muchsmaller for CHNF computations. Therefore only cheap heuristic computationsare acceptable at all.(3) The best remainder strategy, introduced in [HHR93], has marked a largestep forward for integer HNF computations. The question arises if it is alsoapplicable for pseudomatrices over Dedekind domains. The idea of the bestremainder strategy is as follows.The entries except one of a row must be cleared. This is not approached directlyby using the gcd of the row. Instead, a pivot is chosen, all entries of the row arereduced (using a factor obtained with a remainder division) with this pivot. Onlyif the pivot is already the gcd of this row the row is �nished, otherwise anotherpivot is chosen and the process is repeated. The correctness of the Euclideanalgorithm assures that the process terminates.This is the problem forDedekind rings, where the correctness of the Euclideanalgorithm cannot be guaranteed, provided that an analogy of the remainder



4.5. THE EXISTENCE OF THE NORMAL FORM 71division is used by selecting a certain measure for an algebraic number.An immediate consequence from the existence of the CHNF and proposition 4.4.4 isCorollary 4.5.2:If two pseudomatrices over a DEDEKIND ring are module equivalent, then they are alsotransformation equivalent.For each class of module equivalent pseudomatrices, there exists exactly one pseudomatrixin CHNF.4.5.2 The BOSMA�POHST algorithmThis algorithm was introduced in the paper [BP91] and was the �rst algorithmto compute a normal form over a maximal order in an algebraic number �eld. It isformulated there in the context of relative extensions but can be seen as an algorithmto transform a given pseudomatrix into the CHNF.This formulation has a peculiarity. The input is not a general pseudomatrix but onewith only trivial coe�cient ideals. Using the algorithm to compute a two elementrepresentation of an ideal (see [vS87, pp.40�41]), it is not di�cult to transform agiven pseudomatrix into one with trivial coe�cient ideals.Algorithm 4.5.3: CHNF computation, BOSMA�POHSTInput: Pseudomatrix M = � 1D : : : 1DA �.Output: Pseudomatrix M0 in CHNF.Steps:1: Initialize D(n) := A.2: Loop t := n; : : : ; 1.3: D(t) can be written as D(t) = (D1; : : : ;Dm) = 0BBBBBBB@
d11 � � � d1m... ...dt1 � � � dtm0 � � � 0... ...0 � � � 0

1CCCCCCCA.4: Let at be the ideal generated by dt1; : : : ; dtm. If at is the zero ideal, thenD(t�1) :=D(t), Bt := 0, and go to the next loop cycle.5: Apply algorithm 1.8.6 to �nd e1; e2 2 at and f1; f2 2 a�1t such thate1f1 + e2f2 = 1:6: Apply algorithm 1.8.9 to �nd g1; : : : ; gm 2 D such that Pmi=1 dtigi = e1 andh1; : : : ; hm 2 D such that Pmi=1 dtihi = e2.



72 CHAPTER 4. THE THEORY OF PSEUDOMATRICES
7: Set C1 := 0BBBBBBBBB@

Pmi=1 gid1i...Pmi=1 gidt�1;ie10...0
1CCCCCCCCCA and C2 := 0BBBBBBBBB@

Pmi=1 hid1i...Pmi=1 hidt�1;ie20...0
1CCCCCCCCCA.

8: Let Bt := f1C1 + f2C2.9: Let D(t�1) := (D01; : : : ;D0m), where D0i := Di � ditBt for i 2 Nm . Go to thenext loop cycle.10: Let M0 = � a1 : : : anB1 : : : Bn �. Delete all columns of M0 whose coe�cient ideal isthe zero ideal.11: Reduce all the entries above the diagonal of the pseudomatrix M0, as describedin the algorithm 4.5.1 in the loop from step 12.12: End.Proof. In step 5 we constructed ei and fi such that e1f1 + e2f2 = 1, therefore Bt hasa one in position t. Hence step 9 guarantees that D(t�1) has indeed the form whichis proposed in step 3.From the construction of the gi and hi, it becomes clear that we actually constructedC1 =D(t)0B@g1...gm1CA and C2 = D(t)0B@h1...hm1CA :and therefore we know C1;C2 2 Mod �D(t)�. From f1; f2 2 a�1t , we conclude thatf1at � D and f2at � D. HenceatBt = at(f1C1 + f2C2) � Mod �D(t)� : (4.5.1)A simple induction (on t beginning with n and decreasing) shows Mod �D(t)� �Mod (A). The induction start is trivial because A = D(n). Assume Mod �D(t)� �Mod (A). By formula (4.5.1) it follows that atBt � Mod (A). On the other hand,every column of D(t) is an element of Mod (A); hence, by construction in step 9, allthe columns of D(t�1) are elements of Mod (A), which �nishes the induction.Let E be an arbitrary element of Mod �D(t)�. Then there exist ki 2 D such thatE =Pmi=1 kiDi. By the de�nition of the D0i in step 9, it follows thatE = mXi=1 ki(D0i + ditBt) = mXi=1 kiD0i + Bt mXi=1 kidit 2 atBt +Mod �D(t�1)�



4.5. THE EXISTENCE OF THE NORMAL FORM 73since at =Pmi=1Ddit. With formula (4.5.1) and the easy consequence from algorithmstep 9, Mod �D(t�1)� � Mod �D(t)�, and we conclude thatMod �D(t)� = atBt +Mod �D(t�1)� : (4.5.2)Equation (4.5.2) iteratively appliedMod (A) = a1B1 + � � �+ anBn:The triangular form of (B1; : : : ;Bn) is another consequence of formula (4.5.1). Theones on the diagonal are already mentioned.4.5.3 Discussion of the di�erences of both algorithmsThe Cohen algorithm has the freedom to choose a pivot entry, contrary to theBosma�Pohst algorithm. This might be an advantage, given a good pivoting strat-egy.The chain of actions of the Bosma�Pohst algorithm can be seen as n (where nis the number of rows) complex pseudomatrix transformations. Therefore it can beassumed that the intermediate entry growth is less than in the Cohen algorithm.This view is supported by the practical investigation in section 6.4.In the next chapter the concept of algorithms with reduction will be introduced. Herea drawback of the complex pseudomatrix transformations in the Bosma�Pohstalgorithm becomes apparent. The Cohen algorithm uses the simpler elementarytransformations and therefore enables the reduction after every transformation step.There is roughly one transformation for every matrix entry.In sections 6.3 and 6.4 it is demonstrated how both algorithms behave practically.4.5.4 Consequences of the existence of the normal form for matricesover principal ideal ringsThe existence of the CHNF for pseudomatrices has implications on the existence ofthe HNF for matrices over principal ideal domains. It is not really necessary sincethe proof (e.g. in [PZ93, p. 179]) is possible without the theory of pseudomatrices.However, see the argumentation in subsection 3.2.4. The alternative proof is intendedto clarify the relationship of matrices and pseudomatrices.Lemma 4.5.4:Let D be a principal ideal domain (which implies D is a DEDEKIND ring) and K its quotient�eld. For every matrixM over K, there exists a matrix in HERMITE normal form which ismodule equivalent toM.



74 CHAPTER 4. THE THEORY OF PSEUDOMATRICESProof. We consider the pseudomatrix M consisting of M and the trivial ideal forevery pseudomatrix column. There exists a course of pseudomatrix transformationswhich transform M into a pseudomatrix N in CHNF. Since D is a principal idealdomain, we can transform this N into another pseudomatrix N0 with a triangularmatrix and trivial ideals with some Push Factor transformations. Let N be thematrix of the pseudomatrix N0. Then N is clearly in the Hermite normal form byde�nition 3.2.4.With the equation2Mod (M) = Mod (M) = Mod (N) = Mod (N0) = Mod (N) ;the proof is completed.But we can do more than that. Let D be a principal ideal domain and K its quotient�eld. Consider the pseudomatrix M = � a1 : : : amA1 : : : Am �, where ai is a fractionalD�ideal and Ai 2 Kn for i 2 Nm . For every ideal ai for i 2 Nm , we can �nd an ai 2 Kwhich generates ai. It makes sense to consider the matrixM = �a1A1; : : : ; amAm�(which will be called a corresponding matrix to M in the sequel) since we knowMod (M) = Mod (M). There might be more than one possible generator for a givenideal. Therefore there are usually many matrices corresponding to M.We know that all generators of a given principal ideal only di�er by a factor whichis a unit of D. Therefore the columns of two matrices corresponding toM also di�erby a factor which is a unit in D.Consider the de�nition 3.1.2, the transformation number 3 allows the multiplicationof a unit in D. Therefore any two matrices corresponding to the same pseudomatrixare transformation equivalent.Therefore we are able to prove the following fact.Lemma 4.5.5:Let D be a principal ideal domain. Two matrices corresponding to (pseudomatrix) trans-formation equivalent pseudomatrices are (matrix) transformation equivalent.Proof. It is su�cient to prove the lemma for a pseudomatrixM and another pseudo-matrixN produced fromM by a single elementary transformation of de�nition 4.2.1.For the Swap transformation, there is a corresponding transformation in de�ni-tion 3.1.2 (number 1).2. Compare the di�erent notions of Mod for matrices in de�nition 3.1.1 and for pseudomatricesin de�nition 4.1.2



4.5. THE EXISTENCE OF THE NORMAL FORM 75For the Push Factor transformation, there is nothing to prove because M andN correspond to the identical matrix (provided that the same generators of thecoe�cient ideals are used.)For the Two scaled transformation, there is a corresponding transformation inde�nition 3.1.2 (number 3). Assume the same notations as in de�nition 4.2.1. Letthe ideals ai and aj resp. be generated by elements ai; aj 2 K resp. For transformation3 of de�nition 3.1.2 the parametersd1 := c1 2 D;d2 := c2aiaj 2 D;d3 := c3ajai 2 D;d4 := c4 2 Dare used to transform the corresponding matrices.For the Collect transformation, the corresponding matrix transformation is againnumber 3 of de�nition 3.1.2. Let the ideals ai and aj resp. be generated by elementsai; aj 2 K resp. The parameters ared1 := c1ai 2 D;d2 := c2aj 2 D;d3 := c3aj 2 D;d4 := c4ai 2 D:The Spread transformation can be dealt with analogous to the Collect transfor-mation.For the Insert zero column transformation, there is a corresponding transforma-tion in de�nition 3.1.2 (number 4).For the Delete zero column transformation, there is a corresponding transfor-mation in de�nition 3.1.2 (number 5).Now we have proved the following theoremTheorem 4.5.6:Let D be a principal ideal domain. For every matrix there exists a course of elementarytransformations which transform the matrix to a matrix in HERMITE normal form.Proof. LetM be a matrix over K, the quotient �eld of D. Let a reduce function be�xed.Let M be the pseudomatrix which consists ofM and trivial ideals.M can be trans-formed to a pseudomatrix N in CHNF considering the chosen reduce function. Let



76 CHAPTER 4. THE THEORY OF PSEUDOMATRICESN be any matrix corresponding to N. Lemma 4.5.5 guarantees that M and N aretransformation equivalent.According to de�nition 3.2.4 of the HNF and de�nition 4.4.1 we know that N isin HNF except for the condition on the diagonal entries. This condition can besatis�ed with at most one application for every column of the transformation 3 inde�nition 3.1.2.
4.6 Steinitz formsTriangular forms are not the only desirable forms in the class of equivalent pseu-domatrices. Another aim is to �nd the smallest possible pseudomatrix with trivialcoe�cient ideals. This is equivalent to the task of �nding a minimal D�generatingsystem of a given �nitely generated D�module.Let M be a pseudomatrix with n rows and rank n. LetM0 = � a1 : : : anA1 : : : An �be the CHNF of M. We know that in general it is not possible to �nd an equivalentpseudomatrix with n columns which has only trivial coe�cient ideals. If this wouldbe the case, every relative extension would have a relative integral basis. But this isnot the case, as argumented in [BP91].For the ideals ai with i 2 Nn , we can �nd the two�element presentationsai = �iD + �iD:Therefore M0 gives a D�generating set for Mod (M) of 2n elements:Mod (M) = nXi=1 ��iAiD + �iAiD�:But we can do better than that! It is possible to �nd a pseudomatrix M00 with ncolumns which has trivial coe�cient ideals with the exception of one ideal. The idealclass of this ideal is an important invariant of Mod (M) and is called the Steinitzclass. Therefore pseudomatrices of the described form will be referred to as Steinitzforms, with the convention that at most the last coe�cient ideal may be nontrivial.From the Steinitz formM00 = � 1D : : : 1D bB1 : : : Bn�1 Bn �



4.6. STEINITZ FORMS 77we can construct a minimal D�generating system of Mod (M). If b is a principalideal generated by b thenMod (M) = bBnD + n�1Xi=1 BiDwhich is even a D�basis. Otherwise, letting b = �D + �D,Mod (M) = �BnD + �BnD + n�1Xi=1 BiD:A di�cult question is how to choose a unique Steinitz normal form from the theset of all Steinitz forms. Unfortunately, uniqueness can not be obtained in therelatively natural way like the CHNF. The following example shows that there arepseudomatrix classes where all Steinitz forms are not triangular forms.Example 4.6.1. Let � be a root of the integral polynomial x3 +42x+154. Let K bethe algebraic number �eld K = Q [�]. The maximal order oK of K is generated by thepowers of �. The class group is isomorphic to C3 � C3 � C3. Its generators are theprime ideals p1 = 2D + �D, p2 = 3D + (1 + �)D, and p3 = 7D + �D.The ideals a1 = p1p2 and a2 = p1p3 are also nonprincipal. Let a reduce function be�xed such that one is reduced modulo the ideal a1a�12 , and letM = 264� a1 a21 10 1 �375 :Then M is in CHNF. Lemma 4.4.3 states that all module equivalent pseudomatriceshave the same row ideals. The row ideals of M are a1+a2 = p1 and a2, both of whichare not principal.AssumeN = 264� 1D b1 b0 1�375is a triangular pseudomatrix in a STEINITZ form which is module equivalent to M.By lemma 4.4.3, the second row ideal of M and N is equal, and therefore b = a2.The equality of the �rst row ideal gives us ba2 + D = a1. Since M is integral, bylemma 4.1.5, N is also integral. Therefore ba2 � D and we conclude ba2 = a1. Butthis would imply bp3 = p2 which is a contradiction to the fact that p2 and p3 belongto di�erent ideal classes.Therefore, in this there is no triangular pseudomatrix in a STEINITZ form N.



78 CHAPTER 4. THE THEORY OF PSEUDOMATRICESThe example implies that the triangular shape cannot be used for the de�nition ofa Steinitz normal form.A possible choice of a Steinitz normal form is the Steinitz form with the leastcombined size (see subsection 2.3.1 for the notion of the quality of algebraic num-bers for instance) of the entries. This notion would be impractical because it wouldprobably be an exponentially hard problem to compute.The following algorithm computes a Steinitz form. It is important that D is aDedekind ring because it is so for algorithm 1.8.5.Algorithm 4.6.2: STEINITZ form computationInput: Pseudomatrix M.Output: Pseudomatrix in STEINITZ form: M0 = � 1D : : : 1D bB1 : : : Bn�1 Bn �.Steps:1: Transform M into its CHNF M0 = � a1 : : : anA1 : : : An � :2: Loop i = 1; : : : ; n� 1.3: If ai is a principal ideal, generated by ai 2 K, apply a PUSH FACTOR transfor-mation with the parameter ai, and go to the next loop step.4: Apply algorithm 1.8.5 to the ideals ai and ai+1 which yields the parametersfor a COLLECT transformation which is applied to M0.5: M0 holds the required STEINITZ form.6: End.Remarks:(1) It is possible to record a transformation matrix � it is based on the transfor-mation matrix of the CHNF computation and the elementary matrix belongingto the Collect and Push factor transformations.(2) The step 3 does not require �If and only if�. This is important for algebraicnumber �elds, where the decision if an ideal is principal might be very di�cultto obtain. The standard implementation involves an enumeration of probablyexponential complexity. It is possible to improve this with methods describedin [Hes96] in cases where class group computations are feasible. But still it isexpensive.In the recent implementation there is a fast check on principality, where a fewelements of the ideal are tested if they generate the ideal. This check has provedto be e�ective and cheap. A negative result does not guarantee that the ideal inquestion is not principal � but this is not required by this algorithm.The advantage of using a principal ideal is obvious: the Collect transformationmight cause a coe�cient growth which can sum up considerably.(3) It is not really necessary for i to go from 1 to n� 1. Any other order would doas good, which opens the possibility of a heuristic decision. But the order from1 to n� 1 is very good since the �rst columns of a pseudomatrix in CHNF are



4.7. THE DETERMINANT OF A PSEUDOMATRIX 79very sparse. If Collect transformations are required this strategy diminishescoe�cient growth and preserves part of the sparsity of the CHNF. Assuming afull rank pseudomatrix the resulting pseudomatrix contains at least (n�1)(n�2)2zero entries (compared to n(n�1)2 zero entries of the CHNF).4.7 The determinant of a pseudomatrixDe�nition 4.7.1:Let M = � a1 : : : anA � be a square pseudomatrix with n columns and rows over anintegral domain D. Then the determinant of M is de�ned as the fractional D�ideal (orthe zero ideal)detM =Def detA nYi=1 ai:De�nition 4.7.2:Let M = � a1 : : : amA � be a pseudomatrix with n rows and m columns over anintegral domain D. Let r 2 N with r � m; r � n. Let A0 be an r � r submatrix ofA and i1; : : : ; ir the indices of the columns of A which are columns of A0. Then thepseudomatrix � ai1 : : : airA0 � is called an r�subpseudomatrix ofM. The determinantof this r�subpseudomatrix is called an r�minor.De�nition 4.7.3:The r�minor sum of a (possibly not square) pseudomatrix M is the sum of the de-terminants of all r�subpseudomatrices of M. If no r�subpseudomatrices exist (becauser > min(m;n)), then the r�minor sum is the zero ideal per convention.Remark:We cannot expect minor sums of nonsquare matrices to obey the multiplicativitylaw. Therefore they should not be viewed as a generalization of the determinantalthough minor sums have important applications similar to determinants. Theyallow coe�cient reduction of matrices during successive matrix transformation.The following example demonstrates the main problem to de�ne a determinant�like function for nonsquare matrices:Example 4.7.4. Let D be an integral domain, K its quotient �eld. Let M be the setof all nontrivial matrices (at least one row and one column) over D. Consider�11�(1 1) = �1 11 1� and (1 1)�11� = (2):So how should a multiplicative function det : M ! D be de�ned? In any case itcannot be consistent with ��1 11 1�� = 0 and j2j = 2.



80 CHAPTER 4. THE THEORY OF PSEUDOMATRICESDe�nition 4.7.5:Let r be the maximum of all natural numbers such that the r�minor sum of M is notthe zero ideal. r is called the rank of M. The rank minor sum of M is the r�minorsum of M.Lemma 4.7.6:The determinant of a square pseudomatrix does not change upon applications of the sizepreserving elementary transformations.Proof. It su�ces to show that the General transformation (see subsection 4.2.2)does not change the determinant.The product of the coe�cient ideals changes by 1e . The transformation of the matrixcan be viewed as the multiplication of an elementary matrix as in subsection 3.2.2.The determinant of the elementary transformation matrix equals e. Therefore thedeterminant of the matrix of the pseudomatrix changes by e and the determinant ofthe whole pseudomatrix stays constant.Proposition 4.7.7:The r�minor sum of a pseudomatrix does not change upon applications of the elementarytransformations.Proof. Let M be a pseudomatrix beforeM0 resulting from an application of a trans-formation.It is proved �rst that the insertion of a zero column does not change the r�minorsum. The set of r�subpseudomatrices of M0 contains the r�subpseudomatrices ofM and some pseudomatrices whose determinant is zero because they contain a zerocolumn. This is true even if the set of r�subpseudomatrices of M is empty and thatof M0 is not. If both sets are empty, both r�minors are zero per convention.If a zero column is deleted, the set of r�subpseudomatrices of M contains the r�subpseudomatrices of M0 and some pseudomatrices whose determinant is zero be-cause they contain a zero column. The equality is correct even if one or both sets ofr�subpseudomatrices are empty.It is left to show that an application of a transformation of the General type doesnot change the r�minor sum.Let M = 266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775 :



4.7. THE DETERMINANT OF A PSEUDOMATRIX 81Let � be the set of all injections from Nr to Nm . Let 	 be the set of all injectionsfrom Nr to Nn . For � 2 � and  2 	, letM� = 2666640B@ a�(1) : : : a�(m)a�(1) (1) : : : a�(1) (m)... ...a�(n) (1) : : : a�(n) (m)1CA
377775 :Then the r�minor sum of M isX�2�X 2	 det (M� ):Applying a General two columns transformation to M results in the pseudo-matrixM0. This transformation involves two columns Ai and Aj together with theircoe�cient ideals ai and aj. The rest of the pseudomatrixM is constant. The variablesof this transformation are four elements c1; : : : ; c4 2 K.�BiBj� = �c1 c2c3 c4��AiAj�; ����c1 c2c3 c4���� = e; aiaj = ebibj;c1 2 aib�1i ; c2 2 ajb�1i ; c3 2 aib�1j ; c4 2 ajb�1j : (4.7.1)The question is how the summands in the ideal sum P�2�P 2	 det (M� ) area�ected by the General transformation of columns i and j.Because the column transformation changes every entry of a column simultaneously,we can use the simple implication8 2 	; X�2� det (M� ) =X�2� det (M0� )=) X�2�X 2	 det (M� ) =X�2�X 2	 det (M0� )and show the equality for every  2 	. In the sequel let  2 	 be �xed.Let � 2 �. If neither i nor j is in the image set of �, then obviously det (M� ) =det (M0� ). If both i and j are in the image set of �, then we can apply lemma 4.7.6and we have again det (M� ) = det (M0� ).This simple 1�1 correspondence is not true for those summands where exactly one ofi and j is in the image set of �. Without loss of generality we can assume i 2 Im�.There exists a �0 2 � such that Im�0 = Im� n fig [ fjg. It is clear that if we canshow detM� + detM�0 = detM0� + detM0�0 , we can deduce P�2� det (M� ) =P�2� det (M0� ).



82 CHAPTER 4. THE THEORY OF PSEUDOMATRICESApplying the de�nition of the determinant for pseudomatrices and dividing the idealswhich are equal on both sides, this leaves us to showai det�: : :Ai : : :�+aj det�: : :Aj : : :� = bi det�: : :Bi : : :�+bj det�: : :Bj : : :�where the four matrix patterns denote the same matrix except for one column at acertain position which is Ai, Aj, Bi, and Bj resp.We havebi det�: : :Bi : : :� + bj det�: : :Bj : : :�= bi det�: : : c1Ai + c2Aj : : :�+ bj det�: : : c3Ai + c4Aj : : :�:Since the determinant of matrices is linear in every column, we havebi det�: : :Bi : : :� + bj det�: : :Bj : : :�= bi�c1 det�: : :Ai : : :�+ c2 det�: : :Aj : : :��+bj�c3 det�: : :Ai : : :� + c4 det�: : :Aj : : :��:For a fractional D�ideal over an integral domain D, we knowa(a+ b) � aa+ ab; where a; b 2 K;thereforebi det�: : :Bi : : :� + bj det�: : :Bj : : :�� (bic1 + bjc3) det�: : :Ai : : :� + (bic2 + bjc4) det�: : :Aj : : :�:Because of the membership requirements on c1; : : : ; c4 in formula (4.7.1), we concludethat bi det�: : :Bi : : :� + bj det�: : :Bj : : :�� ai det�: : :Ai : : :� + aj det�: : :Aj : : :�:Up to this point, we have only proved that the r�minor sum of M0 is containedin the r�minor sum of M. But there is an inverse transformation from M0 to M(lemma 4.2.2) which yields the opposite containment.



4.8. REDUCTION OF PSEUDOMATRICES 834.8 Reduction of pseudomatricesLet D be a Dedekind ring and K its quotient �eld. Let M be a pseudomatrixover D. The normal form algorithm 4.5.1 or 4.5.3 transformM ssuccessively into itsnormal form:M =M1 �! � � � �!Mk �!Mk+1 �! � � � �!Mz = 2666640B@ c1 : : : cn1 �. . .0 1 1CA
377775 :In every step k 2 Nz�1 the property Mod (Mk) = Mod (Mk+1) is satis�ed.This section describes modi�cations to this algorithm resulting from the insertion ofa reduction step redR���! after every step:Mk redR���!M0k �!Mk+1:The purpose of this is as follows: The normal form algorithm directly approaches thetriangular form of the pseudomatrix without care about the size (see subsection 2.3.1for the meaning of size in the case of algebraic number rings) of the entries of the in-termediate pseudomatricesMk. If the pseudomatrix is large and di�cult, the growthof the entries of Mk causes the algorithm to fail from memory and calculation timeproblems. Reduction steps will avoid or delay the entry explosion.4.8.1 The general reduction processLet R be a pseudomatrix which satis�es Mod (R) � Mod (M). Only pseudomatricesof a very simple form are useful here � we will consider only diagonal forms. redRdenotes a reduction (de�ned below in de�nition 4.8.1) of Mk using the submodulesof R such thatMod (Mk) + Mod (R) = Mod (M0k) + Mod (R) : (4.8.1)Actually, it seems more natrural to demand Mod (Mk) = Mod (M0k). But the aboveequation is more general and allows a reduction process, which has proved to be verye�ective.De�nition 4.8.1 (Reduction of pseudomatrices):Let R be a pseudomatrix with Mod (R) � Mod (M). A proper reduction redR is any�nite number of single reduction step applications. In a single reduction step, we choose a



84 CHAPTER 4. THE THEORY OF PSEUDOMATRICES
column 266640@ rr1...rn1A

37775 of R, a column 266640@ aa1...an1A
37775 of M, and an element q 2 ra . We replace

the column 266640@ aa1...an1A
37775 of M with the column 266640@ aa1 + qr1...an + qrn1A

37775.This de�nition does not specify a method to reduce. It only gives a frame for theallowed operations.Lemma 4.8.2:For any reduction of the above kind, the equation (4.8.1) holds.Proof. It will be shown that the equation holds for every single reduction step. Let thenotations be as in the above de�nition. LetM be the pseudomatrix before reduction,M0 after.Mod266640@ aa1 + qr1...an + qrn1A
37775 � Mod266640@ aa1...an1A

37775 +Mod266640@ aqr1...qrn1A
37775

= a0B@a1...an1CA+ qa0B@r1...rn1CA � a0B@a1...an1CA + r0B@r1...rn1CA � Mod (M) + Mod (R) :On the other hand,Mod266640@ aa1...an1A
37775 = Mod266640@ aa1 + qr1 � qr1...an + qrn � qrn1A

37775
� Mod266640@ aa1 + qr1...an + qrn1A

37775+Mod266640@ aqr1...qrn1A
37775 � Mod (M0) + Mod (R) :



4.8. REDUCTION OF PSEUDOMATRICES 85The general principles of reduction areTwo�phase method We choose R such that Mod (R) � Mod (M). This impliesMod (M) = Mod (Mz) + Mod (R). After we transformed M into its normalform Mz (with reduction modulo R), we know that the concatenation N :=Mz + R satis�es Mod (N) = Mod (M). Therefore we can apply the normalform algorithm to N, this time without reduction. The �rst normal formapplication with reduction is called �rst phase and the second normal formapplication without reduction second phase.Strict equality method We choose an R such that, for every step, Mod (Mk) =Mod (M0k) is guaranteed. If Mz is in the required normal form, then we are�nished because Mod (M) = Mod (Mz).In practice it is much too di�cult to ensure Mod (Mk) = Mod (M0k) in everystep.Determinant reduction method We useR = 2666640B@ d : : : d1 0. . .0 11CA
377775 ;where d is an integral multiple of the rank minor sum of M, provided Mhas full rank (see de�nition 4.7.5). As well as in the two�phase method theresulted CHNF is not equivalent to M. But there is a method to constructthe correct CHNF which is simpler than another CHNF computation withoutreduction. It is described in [Coh96, p.16].The drawback of this method is that there usually are diagonal reducerswhose generated module is much larger than the reducer obtained with thedeterminant.4.8.2 Suitable reducersA reducer R should represent a large Mod (R), on the one hand, so that there aremany options to reduce the given pseudomatrix. On the other hand, R should beof a very simple form, such that the algorithm which uses the reducer can be fastand e�cient. This can be contradictory, so there has to be a good trade�o� betweenboth.Obviously the pseudomatrix itself is a valid reducer of it, but this would be veryimpractical. Three di�erent types of reducers will be introduced. Only reducers witha diagonal matrix will be used here since they allow for the reduction of a singleentry separately.For a diagonal reducer the two�phase method is very useful. The second phase isrelatively cheap since R is very sparse and Mz is already in normal form. This isdemonstrated practically in section 6.6. In the �rst phase we have a maximum of



86 CHAPTER 4. THE THEORY OF PSEUDOMATRICESreduction possibilities compared with the strict equality method and the determiantreduction method.The following is based on the two�phase method.General diagonal reducer
R = 2666640B@ r1 : : : rn1 0. . .0 1 1CA

377775 ;where ri is a fractional D�ideal for i 2 Nm . The underlying method is as follows: Let266640@ a1 : : : ama11 : : : a1m... ...an1 : : : anm1A
37775be the pseudomatrix to reduce. redR���! does not change the ideals ai, but every singleentry aij of the matrix is reduced with the following procedure:2666640B@ : : : aj : : :...� � � aij � � �... 1CA377775 redR���! 2666640B@ : : : aj : : :...� � � aij + rij � � �... 1CA377775 with rij 2 riaj ;which is obviously a valid reduction as in de�nition 4.8.1.But how can we choose a good rij for which a reduction indeed takes place? Inchapter 2 I specify the notion of reduce functions and give di�erent algorithms. Nowlet a reduce function modR (see de�nition 2.2.11) be �xed. Thenrij = modRriaj (aij)� aij:One�ideal reducerR = 2666640B@ r : : : r1 0. . .0 11CA
377775 ;



4.8. REDUCTION OF PSEUDOMATRICES 87where r is a fractional D�ideal. This reducer is a special case of the general diagonalreducer. The algorithmic advantage of its simplicity is as follows:A basic step in the reduction process2666640B@ : : : aj : : :...� � � aij � � �... 1CA377775 redR���! 2666640B@ : : : aj : : :...� � � aij + rij � � �... 1CA377775; where rij 2 raj ;uses the ideal quotient raj to reduce the aij. Before we can do that, we have tocompute the ideal quotient raj of r and aj. Ideal division is computationally relativelyexpensive.For one column of M, we have to do only one ideal division instead of n. Thealgorithm 4.5.1 frequently changes only the entries of the matrix and not the ideals.A basic computational idea is not to divide the two ideals for every entry, but tostore the ideal quotient until the ideal aj changes.So in this case we have to store m ideals, which is moderate. Compare this to thegeneral diagonal reducer case where we had to store mn ideals, which can be con-sidered intolerable. The ideals are usually stored with a Z�basis, which requires n2integers (and some more O(n) information which is unimportant) for a total of mn3integers. Compare this to a whole pseudomatrix which requires m ideals (n2 integerseach) and mn algebraic numbers (n integers each) which totals to 2mn2 integers. Sostoring the ideal quotients raises the memory complexity by one power!If we have a general reducerR = 2666640B@ r1 : : : rn1 0. . .0 1 1CA
377775 ;we can simply transform this to a one�ideal reducerR0 = 2666640B@ r : : : r1 0. . .0 11CA
377775 where r := lcmfr1; : : : ; rng;satisfying Mod (R0) � Mod (R) because r � ri; 8i 2 Nn . As the price for the moree�cient reduction methodMod (R0) is possibly smaller thanMod (R), this translatesto less reduction power.



88 CHAPTER 4. THE THEORY OF PSEUDOMATRICESRational reducer
R = 2666640B@ rD : : : rD1 0. . .0 1 1CA

377775 ;where rD denotes the ideal generated by the rational number r.The point in using this even simpler reducer is to have no ideal division at all. Insteadof reducing an algebraic number with the ideal rDa , we reduce with the idealr den(a) � rDa ;where den() denotes the denominator of the ideal.It is easy to see that this is correct becausea den(a) is an integral ideal=) a den(a) � 1D=) den(a)D � 1a=) r den(a)D � rDa :So one point of this algorithm is that we save the ideal divisions. Another one isstill more important: It is much easier to reduce an algebraic number with a rationalnumber than to reduce with an ideal, which was described in subsection 2.3.6.The method can be re�ned to increase the reduction power at the expense of someextra computation time:Let e be the maximal natural factor of a den(a) (see de�nition 1.3.5),e = max�e 2 N j a den(a) � eD	:Then r den(a)e D � rDa ;which means that we may reduce even by the rational number r den(a)e instead ofr den(a).



4.8. REDUCTION OF PSEUDOMATRICES 89If we have a one�ideal reducerR = 2666640B@ r : : : r1 0. . .0 11CA
377775 ;we have the rational reducerR0 = 2666640B@ rD : : : rD1 0. . .0 1 1CA
377775 ;where r is the minimum of the ideal r (see de�nition 1.3.1). Again Mod (R0) ispossibly smaller than Mod (M) which translates to less reduction power.Experiments to compare the e�ciency of the di�erent reducers can be found insection 6.3.4.8.3 Obtaining reducersIn important applications (like relative ideals), we can assume reducers to be knownin advance. If this is not the case, we obtain a reducer with the method below.Unfortunately, the reducers obtained with this method are usually quite bad.Proposition 4.8.3:Let M be an integral pseudomatrix with n rows and m columns. Let d be the n�minorsum of M (see de�nition 4.7.3). Then dDn � Mod (M).Proof. Since M is integral, by lemma 4.1.5, Mod (M) � Dn. If n > m, the n�minorsum is zero, which produces a zero pseudomatrix as a reducer which is equivalent tono reduction at all. Thus, there is nothing to prove. The rank of M must be n for dnot to be zero.By proposition 4.7.7, the n�minor sum is not altered by applications of elementarytransformations. Since we established the equivalence of module and transformationequivalence, we know that the n�minor sum of M equals the n�minor sum of theCHNF M0 of M. Since M was integral, so is its CHNF.It remains to prove the theorem for square matrices in CHNF. LetM = 2666640B@ a1 : : : an1 �. . .0 1 1CA
377775 and d = nYi=1 ai:



90 CHAPTER 4. THE THEORY OF PSEUDOMATRICESWe have to show8i 2 Nn ; dEi � Mod (M) ;where Ei denotes the i-th canonical vector in Dn.Since M is integral and has at least one entry equal to one in every column, we haveai � D, for any i 2 Nn . Let di :=Qij=1 aj. It is su�cient to prove8i 2 Nn ; diEi � Mod (M) : (4.8.2)We prove that by induction over i, starting from 1.For i = 1 we see that the �rst column of M is identical to �a1E1�, so there is nothingto prove.Let 4.8.2 be proved for all j 2 N i�1 . Let the j-th entry of the i-th column of M bedenoted by cj. Then the i-th column of M can be written as:Ai = Ei + i�1Xj=1 cjEj:Let j 2 N i�1 . SinceM is assumed to be integral, we have aicj � D. By the de�nitionof di, we concludedicj � dia�1i � dj anddicjEj � djEj � Mod (M) by induction assumption.By de�nition, aiAi � Mod (M). By de�nition of di, this gives diAi � Mod (M).Now diEi = di Ai � i�1Xj=1 cjEj! � diAi + i�1Xj=1 dicjEj � Mod (M)which �nishes the induction step and the proof.De�nition 4.8.4:The denominator of a pseudomatrix M (over an algebraic number �eld over Q ) is theminimal natural number d such that dM is an integral pseudomatrix.



4.9. THE MODULE OF PSEUDOMATRICES 91Corollary 4.8.5:Let d be the denominator of a pseudomatrix M with n rows and d be the n�minor sumof dM. ThenddDn � Mod (M) :
In other words 2666640B@ dd : : : dd1 0. . .0 11CA

377775 is a proper one�ideal reducer for M.The reducer obtained by this corollary is tested in section 6.4.4.9 The module of pseudomatricesDe�nition 4.9.1:Let M = � a1 : : : amA1 : : : Am � and N = � b1 : : : blB1 : : : Bl �be two pseudomatrices with the same number of rows. Addition is de�ned as the con-catenationM+N =Def �a1 : : : am b1 : : : blA1 : : : Am B1 : : : Bl� :Let a 2 K. Scalar multiplication is de�ned asaM =Def � aa1 : : : aamA1 : : : Am � :These de�nitions are consistent with addition and scalar multiplication of D�modules:Mod (M) + Mod (N) = Mod (M+N) andaMod (M) = Mod (aM) : (4.9.1)It is easily seen that the pseudomatrices with a �xed number of rows form a D�module with these de�nitions.



92 CHAPTER 4. THE THEORY OF PSEUDOMATRICES4.10 Dual pseudomatrices and intersection of modulesDe�nition 4.10.1:Let M = � a1 : : : anA � be a square pseudomatrix with n rows and rank n. Then thedual pseudomatrix is the pseudomatrix M0 = � a�11 : : : a�1n�Atr��1 �.For invertible square matrices A over �elds we have (Atr)�1 = (A�1)tr and thereforeM =M00.Lemma 4.10.2:Let M be a pseudomatrix and C 2 Kn. ThenC 2 Mod (M) () 8D 2 Mod (M0) : CtrD 2 D:Proof. Let the notation of M and M0 be as in de�nition 4.10.1.Let C 2 Kn. Since A is invertible, there are unique ai 2 K, for i 2 Nn , such thatC = A0B@a1...an1CA :Then, C 2 Mod (M)() A0B@a1...an1CA 2 Mod (M)() 8i 2 Nn ; ai 2 ai() 8i 2 Nn ; 8bi 2 a�1i : aibi 2 D() 8bi 2 a�1i ; where i 2 Nn ; nXi=1 aibi 2 D() 8bi 2 a�1i ; where i 2 Nn ; (a1; : : : ; an)Atr(Atr)�10B@ b1...bn1CA 2 D() 8bi 2 a�1i ; where i 2 Nn ;0B@A0B@a1...an1CA1CAtr (Atr)�10B@ b1...bn1CA 2 D() 8B 2 Mod (M0) ;CtrB 2 D



4.10. DUAL PSEUDOMATRICES AND INTERSECTION OF MODULES 93since Mod (M0) = 8><>:(Atr)�10B@ b1...bn1CA������� bi 2 a�1i ; 8i 2 Nn9>=>; :
Proposition 4.10.3:Let M and N be two pseudomatrices with n rows and columns of rank n. ThenMod (M) \Mod (N) = Mod (R0) ;where R is the CHNF of the pseudomatrix M0 +N0.Proof. Let C 2 K.C 2 Mod (M) \Mod (N)() C 2 Mod (M) and C 2 Mod (N)() 8B 2 Mod (M0) ; CtrB 2 D and8E 2 Mod (N0) ; CtrE 2 D; by lemma 4.10.2() 8B 2 Mod (M0) + Mod (N0) ; CtrB 2 D() 8B 2 Mod (M0 +N0) ; CtrB 2 D; by (4.9.1)() C 2 Mod (R0) ; where R is the normal form of M0 +N0,by lemma 4.10.2.For the last conclusion we needed the fact that the rank of M and N is n whichimplies that the rank of M0 +N0 also equals n. Then the normal form R is squareand has rank n, therefore lemma 4.10.2 may be applied.



Chapter 5Relative idealsFor an introduction to relative extensions in algebraic number �elds see [BP91].See [DP98] for applications which stress the importance of computations in relativeextensions in connection with the computation of sub�elds in [Klü97].The arithmetic of relative ideals is one important application of the normal formalgorithm over algebraic number rings. In [Fri97] the round�two�algorithm is devel-oped for the computation of a pseudobasis of the relative maximal order where thearithmetic of relative ideals plays an important role.What is meant by relative ideals? A relative ideal is an ideal in an order of analgebraic number �eld as described in chapter 1. The terminology �relative� refersto a special presentation of this ideal using a nontrivial sub�eld. Relative ideal is ashorthand for ideal in relative representation.5.1 Relative ideals in algebraic number �eldsLet K be an algebraic number �eld over Q with �nite degree [K : Q ] = m > 1 andL be a �nite algebraic extension of K with degree [L : K] = n > 1. Let oK be thering of integers of K, which is a Dedekind domain.Let O be an order of L. Then O does not always have an oK�basis. But, at least Ohas a presentationO = nXi=1 ci!i; where ci are fractional oK�ideals and !i 2 L, (5.1.1)which is a relative pseudobasis of O. 
 = (!1; : : : ; !n) is also a basis for L as aK�vector space.An algebraic number � 2 L can be represented as� = nXi=1 ai!i; where ai 2 K;which is called the relative representation of the algebraic number �.94



5.2. BASIC FUNCTIONS 95De�nition 5.1.1:An O�ideal A with at least one of the following presentations is called an ideal inrelative representation or, shortly, a relative ideal.pseudobasis presentation A = a1�1 + � � � + an�n, where ai is a fractional oK�idealand �i 2 L are algebraic numbers in relative representation for all i 2 Nn .two�element presentation A = O�1+O�2, where �1; �2 2 L are algebraic numbersin relative representation.generalized two�element presentation A = Oa1�1 + Oa2�2, where a1 and a2 arefractional oK�ideals and �1; �2 2 L are algebraic numbers in relative representa-tion.5.2 Basic functionsRelative ideals can be seen as a generalization of the ideals as they are describedin chapter 1, which are called absolute ideals in this chapter1. The presentationsthere are based on the presentation of integral algebraic numbers as vectors over Z.This leads to the representation of integral ideals with matrices over Z.In this chapter we deal with algebraic numbers represented as vectors of algebraicnumbers, which leads to the presentation of ideals as pseudomatrices of algebraicnumbers and ideals. The main complication is that we cannot use matrices over oKto represent relative ideals if oK is not a principal ideal domain.We are able to generalize the algorithms for absolute ideals, to relative ideals butquite a few problems have to solved.5.2.1 The corresponding absolute orderSince L can be viewed as an algebraic number �eld over Q , O has a Z�basisO = nmXi=1 �iZ; where �i 2 L for i 2 Nnm : (5.2.1)Assumption 5.2.1. Writing �i 2 L in formula (5.2.1) and !i 2 L in (5.1.1) ac-tually means two di�erent things: in the former, algebraic numbers are presentedas vectors over Q and in the latter, as vectors with entries over K, which are pre-sented as vectors over Q themselves. In the sequel I will identify both presentations,assuming that the transformation between both is well�established.The computational connection between di�erent representations of one algebraic num-ber �eld is not trivial. First of all it depends on the way the algebraic number �eld ispresented. See [Dab93] for the background of the ideas which have been implementedin KANT.1. Absolute ideals are relative ideals in the special case K=Q .



96 CHAPTER 5. RELATIVE IDEALSThe basis � = (�1; : : : ; �nm) can be obtained from the representation in formula(5.1.1). Let the oK�ideals c1; : : : ; cn be given by Z�basesci = mXj=1 cijZ; where cij 2 K for i 2 Nn ; j 2 Nm :Then O = nXi=1  mXj=1 cijZ!!i = nXi=1 mXj=1 cij!iZ:5.2.2 Transformation from relative to absolute idealsLet the ideal A be given by an oK�pseudobasis, A = a1�1 + � � �+ an�n, where ai is afractional oK�ideal and �i 2 L for i 2 Nn . Let the ai be given by Z�bases,ai = ai1Z+ � � �+ aimZ; where aij 2 K; i 2 Nn ; j 2 Nm :Then we have a Z�generating system of A as:A = nXi=1 mXj=1 �iaijZ:If A is given in the generalized two�element presentationA = Oa1�1 +Oa2�2;where a1 and a2 are fractional oK�ideals and �1; �2 2 L, then we have to use thepseudobasis of O:O = nXi=1 ci!i; ci fractional oK�ideals; !i 2 L; for i 2 Nm :Let the oK�ideals a1; a2; c1; : : : ; cn be given by Z�bases,al = mXj=1 aljZ; where alj 2 K for l = 1; 2; j 2 Nm ; and
ci = mXj=1 cijZ; where cij 2 K for i 2 Nn ; j 2 Nm :



5.3. ARITHMETIC IN RELATIVE IDEALS 97Then A = nXi=1 !i mXj=1 cijZ! mXk=1 a1kZ!�1 + nXi=1 !i mXj=1 cijZ! mXk=1 a2kZ!�2= 2Xl=1 nXi=1 mXj=1 mXk=1 cijalk�l!iZ:which is a set of 2m2n Z�generators for A which can be reduced to a Z�basis witha HNF computation.If the ideals a1 and a2 are trivial the above formula simpli�es toA = 2Xl=1 nXi=1 mXj=1 cij�l!iZand only 2mn Z�generators have to be considered.5.2.3 Transformation from absolute ideals in relative idealsIf the ideal is given in two�element presentation, nothing is to be done using assump-tion 5.2.1. If the ideal is given as a Z�basis, we have nm Z�generators. These are alsooK�generators. They can be reduced to a oK�pseudobasis with a CHNF computation.5.3 Arithmetic in relative idealsLet the relative ideals A and B be represented asA = a1�1 + � � �+ an�n and B = b1�1 + � � �+ bn�n:Then A +B = a1�1 + � � �+ an�n + b1�1 + � � �+ bn�n:This is a presentation with 2n summands. The normal form algorithm is able to �ndfractional oK�ideals c1; : : : ; cn and 
1; : : : ; 
n 2 L such thata1�1 + � � �+ an�n + b1�1 + � � �+ bn�n = c1
1 + � � �+ cn
n;which gives us a pseudobasis of the relative ideal A+B.With the same notations as above, we have for the productAB = nXi=1 nXj=1 aibj�i�j:



98 CHAPTER 5. RELATIVE IDEALSSo we multiply each aibj and �i�j, which gives us a presentation with n2 summands.The normal form algorithm can reduce this to a pseudobasis.We can also use the two other algorithms introduced in subsection 1.2.1 for relativeideals.For the mixed multiplication, let B be presented with an oK�basis as above andA = O�1 +O�2, where �1; �2 2 L. B being an ideal implies OB = B. ThereforeAB = O�1B+O�2B = �1B+ �2B = 2Xk=1 nXi=1 bi(�k�i):which is to be reduced by the normal form algorithm.One important prerequisite for the four generator multiplication method is the exis-tence of the representation matrix for algebraic elements in relative extensions, see[Pau96]. Let A = O�1 +O�2 and B = O�1 +O�2, where �1; �2; �1; �2 2 L. ThenAB = O�1�1 +O�2�1 +O�1�2 +O�2�2:An e�cient algorithm for inversion and division of relative ideals in the relativemaximal order is developed in [Fri97, pp. 93�98].5.4 Computing the minimum of a relative idealLet A be represented as A = a1�1+� � �+an�n. We want to compute the oK�minimumideal of de�nition 1.3.1 which will simply be called minimum in the following. Thegeneral method, in analogy to the algorithm 1.3.2, uses the fact that (�1; : : : ; �n) isa K�vector space basis for L. Therefore there exist bi 2 K, where i 2 Nn , such thatnXi=1 bi�i = 1:Let c 2 K\A. Then c =Pni=1 cbi�i. Since a1�1+ � � �+ an�n is indeed a pseudobasisthis is equivalent to 8i 2 Nn : cbi 2 ai. We conclude thatK \ A = n\i=1 aibi :Since the �i are given in the basis 
, we are given a matrix M which satis�es(�1; : : : ; �n) = 
M . Let the inverse of this matrix be M�1 = �mij�i;j2Nn . If we can�nd ci 2 K, where i 2 Nn , such that Pni=1 ci!i = 1, then we havenXj=1 �j nXi=1 cimji = 1;



5.5. USING THE MINIMUM FOR ARITHMETIC 99which providesbj = nXi=1 cimji 2 K with nXi=1 bi�i = 1:If the basis 
 has the property !1 = 1 and the matrix M is the matrix of a pseudo-matrix in CHNF, the above formula for the minimum simpli�es to:K \ A = a1:So the only di�cult part is to �nd a representation of the 1. How this can be done de-pends on the representation of the order O. We can apply the normal form algorithmto a generating system of O which gives us another pseudobasis O with the �rst basiselement equal to 1. We can use the basis transformation to get a representation ofthe 1 in the original representation.5.5 Using the minimum for arithmeticIn analogy to section 1.4 we can improve the e�ciency of ideal arithmetic by usingthe minimum ideals.Let A be a relative ideal and m its oK�minimum ideal of de�nition 1.3.1. Then wehave mO � A. Therefore mO is a reducer of A in the sense of de�nition 4.8.1.If we add or multiply two relative ideals with the above methods, we get a generatingpseudomatrix which is subjected to a normal form computation. The following lemmaprovides a good reducer for this normal form computation:Lemma 5.5.1:Let A and B be (fractional) ideals in the order O. ThenminA +B � minA+minB andminAB � minAminB: (5.5.1)5.6 Least common multiplier for relative idealsFor ideals A and B over a maximal order we have the propertylcm(A;B) = ABA +B ;this can also be used to compute the lcm of relative ideals.There is a more sophisticated method to compute the lcm using the algorithm de-veloped in section 4.10. Let M1 and M2 be the pseudomatrices representing A andB. Proposition 4.10.3 gives us a pseudomatrix N which satis�esMod (N) = Mod (M1) \Mod (M2) :Since lcm(A;B) = A \B, we conclude that N represents lcm(A;B).



Chapter 6Examples
6.1 General remarksNot all the experiments of this chapter have been performed on the same computer.To compare computation times of di�erent computers the test program �relidmark�is used. This idea is similar to �GAPstones�, which is used to compare the run timefor GAP programs on di�erent computers. The �relidmark� number is inverselyproportional to the computation time. The test �le contains creation of absolute andrelative orders, computations of class groups, and multiplication of relative ideals.The �GAPstones� number only measures the speed of integer arithmetics. Thereforeit is independent on any improvements of the GAP system. In opposition, �relid-mark� is dependent on the speed of various number theoretic algorithms in KANT.The �relidmark� is normed to be equal to the �GAPstones� number on the HP series700 computers which are mainly used for the development of KANT. The computersused for the experiments range from 74000 to 259000 relidmark.
6.2 Comparison of the di�erent multiplication algorithmsfor absolute idealsLet p 2 Z[x] be an irreducible polynomial of degree n 2 N . A root � of this polynomialgenerates an integral domain O = Z[�] which is a �nitely generated Z�module. LetK be the quotient �eld of O. Then O is an order of K, called an equation order.Let oK be a maximal order of an algebraic number �eld K. There exists a Z�basis
 = (!1; : : : ; !n) for oK.This situation is called an absolute extension and is the starting point for most ofthe algebraic number theoretic computations in KANT. Algebraic numbers and idealsover oK are represented in this basis 
.100



6.2. COMPARISON OF ABSOLUTE MULTIPLICATION ALGORITHMS 101AimHow does the time e�ciency of di�erent multiplication algorithms for absolute idealsdepend on the degree of the algebraic number �eld and the size of the ideals?The answer will give heuristics for the question of how to use the di�erent multi-plication algorithms to increase the overall time e�ciency of the multiplication forabsolute ideals.NotationsPresentations of an idealThe following abbreviations for ideal presentations, introduced in section 1.1 are usedin the tables.basis The Z�basis presentation, where the matrix representing the ideal is assumedto be in HNF.2elt The two�element presentation where one element is assumed to be rational,ornormalnormal presentation.TransformationsUsing one presentation of an ideal it is possible to compute another presentation.The following abbreviations for presentation transformations are used in the tables.basis!2eltproduces a two�element presentation of an ideal given by a basis presentation,2elt!basisproduces a basis presentation of an ideal given by a two�element presentation,2elt!normalproduces a normal presentation of an ideal given by a two�element presenta-tion, andbasis!normalproduces a normal presentation of an ideal given by a basis presentation.Because a normal presentation is a special two�element presentation, the transforma-tion normal!2elt is trivial and the transformation normal!basis can be consideredidentical to the transformation 2elt!basis because there is no special algorithm.



102 CHAPTER 6. EXAMPLESMultiplication algorithmsFour di�erent multiplication algorithms were discussed in subsection 1.2.1 which aretabulated asbasis multmultiplication using the two Z�bases of the ideals. From the algorithm it isclear that a permutation of the two factors does not make a di�erence incomputation costs.mixed multmultiplication using one Z�basis and one two�element presentation. Fromthe algorithm, it is clear that a permutation of the two factors might make adi�erence in computation costs.four multmultiplication using the two�element presentations of both ideals. From thealgorithm it is clear that a permutation of the two factors does not make adi�erence in computation costs.normal multmultiplication of two ideals in normal presentation. This multiplication mightinvolve another transformation of the presentations whose computation costsare added to the actual multiplication costs (which are very low). Again itis clear that a permutation of the two factors does not make a di�erence incomputation costs.Design of the testSix di�erent number �elds from degree 3 to 33 are used. They are given by theirmaximal orders. For every number �eld, several ideal test sets are used. Each idealtest set contains ideals of roughly the same computational di�culty. For every idealtest set the average of the computation times of randomly chosen ideals is used.6.2.1 Example number �eldsNumber �elds are tabulated by their degrees, only one number �eld for each degreeis used.The number �eld is de�ned by a root � of a polynomial over Z. Because the di�erentroots of an irreducible polynomial are algebraically equivalent, it is not importantwhich of the di�erent roots of the polynomial p the root � actually is. The integralbasis (which is a basis of the maximal order oK of K) is given, where it does notinclude huge coe�cients. It is expressed in the powers of �. For the complete examplegeneration, given as KASH programs, see [Hop]. Note that the actual integral basisis not really relevant for the signi�cance of the result since many randomly chosenideals are used, which should eliminate any e�ects of peculiarities of the maximalorder basis.



6.2. COMPARISON OF ABSOLUTE MULTIPLICATION ALGORITHMS 103number �eld of degree 3 Let K be the number �eld Q [�], where � satis�es�3 + �2 + 81�+ 1 = 0. It has discriminant -529444 and class number 104.The powers of � form a basis of the maximal order oK.number �eld of degree 6 Let K be the number �eld Q [�], where � satis�es�6 + 3�5 � 3115�4 � 6235�3 + 2271309�2 + 13868999�� 219506499 = 0. Ithas discriminant 114 � 2635134 and class number 4.The maximal order oK has the basis(1; �; �2; �3; �4;! = 1004429297+909886177�+3560597177�2+1574028943�3+2829966955�4+�53858758129 ):number �eld of degree 9 Let K be the number �eld Q [�], where � satis�es�9� 30�8+291�7� 835�6� 573�5� 2661�4+5256�3+3435�2+90�� 10394.It has discriminant 26 � 315 � 53 � 4093.The maximal order oK has a basis(1; �; �2; �3; �4; �5; �6;!8 = �2 + �3 + �4 + �5 + �6 + �72 ; !9 =� 192482556886936+63967537334938�+18683832251437�2+119111891060334�3+172319480755568�4+19755909260520�5+155411992372966�6+62922522292402�7+�8�211316676965006 :number �eld of degree 12 Let K be the number �eld Q [�] where � satis�es�12 � 2�11 + 4�10 � 8�9 + 13�8 + 53�7 + 120�6 � 100�5 + 168�4 � 46�3 �12�2 + 14�+ 7 = 0. It has discriminant5 � 7 � 101 � 137 � 2211914545643954724725365004821995731. The powers of �form a basis of the maximal order oK.number �eld of degree 18 Let K be the number �eld Q [�], where � satis�es�18 + 103�17 + 5654�16 + 208051�15 + 5656080�14 + 118519143�13 +1952386178�12 + 25254464067�11 + 253773392888�10 + 1934686349631�9 +10684964678644�8 + 38972994689559�7 + 110317002224976�6 +47679505774513�5 + 6617690323691�4 + 1913538554456�3 +1118923004758�2 � 222202371528�+ 9309104652 = 0. The �eld hasdiscriminant�24 � 310 � 712 � 536 � 400237 � 73783647915044072969714969939508258643. Thebasis of the maximal order is not given explicitly here because it would �llseveral pages.This number �eld is also presented as a relative extension. Insubsection 6.3.1 it is labeled �3 over 6�.number �eld of degree 25 Let K be the number �eld Q [�], where � satis�es�25 � 10�23 + 16�22 + 108�21 � 15�20 � 790�19 + 1072�18 + 5124�17 �5608�16 � 7984�15 � 758�14 + 93156�13 + 37420�12 � 240436�11 �101240�10 + 182046�9 + 2012960�8 + 16972�7 � 2449224�6 � 3922137�5 +1881886�4 + 21697150�3 + 18723708�2 + 25162760�� 6466833 = 0. The �eld



104 CHAPTER 6. EXAMPLEShas discriminant�220 �3 �1120 �175 �19 �547 �42302891926833049490184855470064552307173943.Again the basis of the maximal order will not be given.This number �eld is also presented as a relative extension. Insubsection 6.3.1 it is labeled �5 over 5�.number �eld of degree 33 Let K be the number �eld Q [�], where � satis�es�33 � 84�29 + 171�27 + 1347�25 + 3�24 � 6300�23 + 6�22 + 37565�21 + 210�20�166482�19 � 918�18 + 305595�17 � 4896�16 � 188758�15 + 22650�14 +7323�13 � 31791�12 + 939�11 + 13872�10 � 290�9 + 687�8 � 1455�7 � 105�6 +696�5 + 90�4 + 12�3 + 12�2 + 8 = 0. The basis of the maximal order and thediscriminant will not be given.This number �eld is also presented as a relative extension. Insubsection 6.3.1 it is labeled �11 over 3�.6.2.2 Ideal test setsThe ideals to compare the run times are chosen randomly from ideal test sets. Theideal test sets contain ideals of a similar computational di�culty. They are producedin a generalized process as follows.We start with the list of all prime ideals over the 11 smallest prime numbers whichrange from 2 to 37. This list of ideals is the �rst test set which is denoted as testset 0. To produce the test set 1 each ideal of the test set 0 is multiplied with onerandomly chosen ideal of the test set 0. The test set 1 contains the same number ofideals as the test set 0, and each factors into 2 prime ideals.In the same way, the test set 2 is produced. Thus, it contains ideals which factorinto 4 prime ideals and so forth. This process yields test sets n, where n 2 Z�0, eachcontaining only ideals which factor in 2n prime ideals. A test set with even simplerideals is called test set 00. It contains the smallest 12 ideals from test set 0. Usually,it contains prime ideals over 2, 3, 5, and 7.The decomposition behaviour of the ideals in one test set is very similar. This is nota problem for our purposes.6.2.3 Number of repetitions per test setFor small examples the computation time is too small to be measured con�dently.Randomly chosen ideals from the same ideal test sets might di�er in their computa-tional di�culty. For both reasons the process of choosing 2 ideals from a given test setrandomly and measuring the computation time is repeated. Any computation timeentry in the table always refers to the average computation time of those repetitions.The number of repetitions per test set is chosen such that the total running time of atest series does not exceed a few minutes since longer computations tend to fragmentthe memory, which slow down further computations. This may blur the results ofthe test.



6.2. COMPARISON OF ABSOLUTE MULTIPLICATION ALGORITHMS 1056.2.4 Computation timesThe table contains two sorts of computation times, times for actual multiplications(assuming that the necessary presentation of the ideals are already given) and timesfor presentation transformations.A complex multiplication method may either use the available presentations or trans-form one or both presentations to apply other algorithms, whatever is faster. Thepreferable complex multiplication method for each of the ideal test sets is given inthe computation time table by the typeface of the multiplication computation timesas follows:boldface This is the least average computation time. The method belonging to thisvalue is to be preferred.italic The method belonging to this value should not be used. Even if the necessarypresentation for another method is not given, it is worth it to transform thepresentation.normal face The method belonging to this value should be used if the necessarypresentations are available and the necessary presentations for a faster methodare not.Blank spaces mean that the particular method was not included in the test run.All times are given in milliseconds. A HP9000 series 700 computer with relidmark124000 (see subsection 6.1) was used for the experiment.number �eld identi�ed by its degreenumber of the ideal test setrepetitions per ideal test settime (in ms) for the time (in ms) for the transformationmultiplication type basis! 2elt! 2elt! basis!basis mixed four normal 2elt basis normal normal3 00 1000 0.99 1.16 1.56 1.00 1.16 0.55 0.75 1.663 0 1000 1.22 1.04 1.65 0.49 0.80 1.94 13.26 1.803 1 500 1.36 1.28 2.16 4.46 1.20 3.02 13.20 2.783 2 200 2.90 2.55 4.35 21.60 1.50 3.10 11.95 4.153 3 100 5.6 4.0 7.7 55.8 4.5 2.4 12.7 13.63 4 100 10.9 7.7 16.8 80.9 5.8 3.7 20.4 31.43 5 100 18.4 14.1 28.4 157.1 9.5 4.0 40.9 104.23 6 50 35.6 26.6 54.8 345.6 19.0 6.2 85.4 231.43 7 50 81.2 60.2 125.0 1073.8 32.0 9.6 316.0 508.63 8 50 224.6 165.2 347.2 1705.0 71.6 19.2 1050.6 1686.23 9 20 741.5 511.0 1077.0 8.0 387.5 56.5 3010.0 2793.03 10 10 2450 1714 3485 19 640 182 1310 22343 11 10 9236 5945 12648 58 5287 684 24437 25307



106 CHAPTER 6. EXAMPLESnumber �eld identi�ed by its degreenumber of the ideal test setrepetitions per ideal test settime (in ms) for the time (in ms) for the transformationmultiplication type basis! 2elt! 2elt! basis!basis mixed four normal 2elt basis normal normal6 00 1000 7.35 4.59 5.94 11.43 2.51 1.61 4.56 8.636 0 500 8.18 5.00 6.96 9.92 3.26 6.22 17.54 9.226 1 200 11.15 6.75 11.20 49.10 3.05 8.55 17.75 9.706 2 100 33 15.3 25.9 88.3 4.9 9.2 18.6 13.66 3 100 60.9 25.2 44.7 101.9 8.9 11.1 24.6 24.46 4 100 121.2 43.8 83.8 206.4 18.0 15.7 40.5 49.46 5 50 217.0 76.0 148.6 270.6 31.0 21.0 61.2 90.26 6 20 420.0 144.0 283.0 414.5 73.5 36.0 600.0 190.06 7 10 983 331 660 645 131 65 204 3786 8 10 2546 882 1755 9 432 142 2469 13026 9 10 8107 2727 5408 22 859 411 10319 18296 10 10 26005 9037 17472 43 3582 1352 2112 52669 00 200 23.90 15.05 16.35 100.60 11.50 3.30 14.90 29.809 0 200 27.15 18.45 24.75 225.35 7.30 13.55 33.05 26.759 1 100 35.6 22.6 32.1 909.5 14.3 13.4 33.6 36.19 2 50 53.6 27.6 37.6 1226.8 18.8 10.0 28.2 54.69 3 50 160.4 52.0 83.6 1341.8 60.2 16.4 34.0 86.09 4 20 254.5 76.0 126.5 2150.0 126.0 22.5 248.0 408.09 5 20 486.5 130.5 232.0 232.5 211.5 35.5 92.5 1217.09 6 10 929 233 428 223 1044 56 151 6519 7 10 2029 493 913 182 923 112 592 15769 8 10 5151 1225 2298 11 2378 248 726 30831512 00 100 48.9 12.3 16.5 6.6 9.9 5.3 2.9 20.912 0 100 53.0 12.3 19.4 60.0 8.1 7.3 11.0 19.812 1 100 71.5 20.3 42.8 514.4 10.8 18.4 22.9 26.412 2 50 239.6 52.8 111.8 315.4 17.0 20.4 28.0 38.012 3 20 476.5 95.5 191.0 740.0 51.0 32.5 63.0 91.012 4 20 1078.5 197.5 373.5 7268.5 126.5 60.5 145.5 283.012 5 10 2149 375 715 16711 368 100 258 66012 6 10 4046 695 1325 6712 621 173 557 118112 7 10 8696 1542 2821 4724 1161 337 1070 271012 8 5 24518 4184 7606 18946 3038 780 3694 4530



6.2. COMPARISON OF ABSOLUTE MULTIPLICATION ALGORITHMS 107number �eld identi�ed by its degreenumber of the ideal test setrepetitions per ideal test settime (in ms) for the time (in ms) for the transformationmultiplication type basis! 2elt! 2elt! basis!basis mixed four normal 2elt basis normal normal18 00 100 162.0 154.2 82.6 351.9 27.9 16.4 48.7 76.018 0 50 194.8 157.6 87.2 260.0 28.0 18.8 42.0 81.818 1 20 282.5 171.5 132.0 1341.5 36.5 26.0 70.0 96.518 2 20 582.5 219.0 223.0 1779.5 58.0 34.5 70.0 128.518 3 20 1655.5 382.0 472.0 3495.5 125.0 73.0 132.5 265.018 4 10 2557 530 670 5629 322 136 156 43018 5 5 4748 836 1170 70086 730 214 268 148218 6 5 7794 1216 1838 1760 4078 322 602 1021618 7 5 19438 2742 4500 40 5548 734 1306 264218 8 5 47632 6364 10732 68 6782 1366 4432 548225 00 100 499.9 520.6 147.7 301.3 116.2 32.6 35.5 184.725 0 50 595.6 526.4 164.8 372.0 67.2 36.2 37.2 158.825 1 20 837.0 560.5 245.0 1302.5 134.5 61.5 103.0 266.025 2 20 2006.0 672.5 486.0 9155.5 125.0 72.5 164.0 343.525 3 10 4854 996 1032 40245 262 105 229 47825 4 5 8064 1382 1524 106222 1014 250 638 207225 5 10 14716 2236 2597 4409 52425 6 5 27442 3512 4698 5540 80033 00 50 2191.6 1549.2 459.6 3586 260 85.4 498.2 1887.433 0 20 2293.5 1560 348.5 1716 305 74 160 198733 1 10 3072 2005 1242 134462 283 251 1549 208133 2 5 6854 2378 1838 353198 366 300 2050 221833 3 10 16426 3281 2968 980 43233 4 10 27442 5673 4366 6612 98133 5 5 50616 7658 7714 4146 1476DiscussionThe following heuristic rules for ideal multiplication strategies can be drawn fromthe table.� For number �elds of degree up to about 15 the mixed presentation method isusually best. If the necessary presentations are not available, it is worth it tocompute a presentation, usually. The four multiplication method should beavoided.� In number �elds from about degree 15 on, the four multiplication method isbest for smaller ideals and the mixed multiplication for larger ideals. If thenecessary presentations are not available it is worth computing the presenta-tions since the basis!2elt and 2elt!basis are relatively fast.



108 CHAPTER 6. EXAMPLES� For small number �elds and small ideals the transformations are expensiveand the di�erences between the basis, mixed, and four multiplication aresmall. The multiplication should be done with the available transformations.� Normal multiplication should not be used as a general method for multipli-cation. It is occasionally very fast but usually much slower than the othermethods.� The very fast computation times for the test ideal sets of around 8 havethe following explanation. The ideal test sets contain only ideals whoseminimum is a power product of prime numbers up to 37. A product of256 prime ideals (referring to test set number 8) is very likely to haveall those prime numbers dividing its minimum. If ideal a of this test setis given in normal presentation, it is actually P�normal, where P is theset of the prime numbers dividing the minimum of a.The normal multiplication has the two di�cult problems of �nding nor-mal presentations and making the normal presentation of two idealscompatible. After this, the actual multiplication is very cheap. Normalpresentations of ideals in ideal test set 8 are very likely to be compatiblealready. Therefore the small computation time is more or less an artifactof the way the ideal test sets are produced.� The small time for the actual multiplication is leveled o� by the largetime to produce the normal presentation.� There is one exception to the previous statement: the order of degree 6,ideal test set 10. In this case the normal multiplication is the fastest nomatter in which presentation the ideals are given. Under similar circum-stances a single normal multiplication is usually quite fast compared withthe other multiplication methods. But for some ideals it is very hard to�nd a normal presentation resulting in an enormous computation timewhich raises the average time considerably. (This happened in the caseof the order of degree 6, ideal test set 9, the time for the transformation2elt!normal.)� In some rows of the table the time for the transformation basis!normalis larger than the time for the transformations basis!2elt and 2elt !normal combined. Obviously, the transformation basis!normal can bereplaced by the transformations basis!2elt and 2elt!normal. The im-plemented algorithms to compute 2elt and normal presentations includerandom choices. In this case the e�ect of lucky/unlucky choices on thecomputation time is very strong since it is expensive to check if the ele-ments in question indeed generate the ideal/are in normal presentation.The trouble is that it can not be determined in advance which is faster:basis!normal or basis!2elt and 2elt!normal combined.



6.3. TESTS OF REDUCED NORMAL FORM ALGORITHMS 1096.3 Comparison of di�erent normal form algorithms withreduction using relative ideal arithmeticAimTo compare the computation times for the di�erent normal form algorithms imple-mented in KANT on pseudomatrices with good reducers known in advance (like inrelative ideal arithmetic).DesignThe overwhelming part of the computation costs of relative ideal arithmetic areconsumed by the normal form computation. Thus, the time for the relative idealmultiplication instead of the normal form computation time is used, for convenience.The actual modules fed into the normal form algorithm result from the basis multi-plication algorithm (marked as test operation *) and of the basis addition (markedas test operation +), described in section 5.3.Let n be the relative degree of the relative extension. The pseudomatrix whose CHNFis to be computed, for� addition, has dimension n� 2n and is very sparse, n(n� 1) entries are zero,since it is the concatenation of two matrices already in CHNF;� multiplication, has dimension n� n2 and is very dense since its columns arerepresentations of products of algebraic numbers. Depending on the size ofentries of the multiplication table for the order, its entries can be large evenif the ideals are relatively small.Compared methodsThe following methods were compared and tabulated using the given abbreviations.C1 Cohen algorithm (algorithm 4.5.1) with a one�ideal reducer (seesubsection 4.8.2).B1 Bosma�Pohst algorithm (algorithm 4.5.3) with a one�ideal reducer (see sub-section 4.8.2).C Cohen algorithm (algorithm 4.5.1) without reductionB Bosma�Pohst algorithm without reductionCg Cohen algorithm (algorithm 4.5.1) with a general diagonal reducer (see subsec-tion 4.8.2).Cr Cohen algorithm (algorithm 4.5.1) with a rational reducer (see subsection 4.8.2).



110 CHAPTER 6. EXAMPLES6.3.1 Example relative number �eldsThe general situation is as follows:Let K = Q [�] be an algebraic number �eld, where � satis�es a certain integralpolynomial equation with rational coe�cients of degree n. Let 
 = (!1; : : : ; !m) bea Z�basis of the maximal order oK of the number �eld L.Let L = K[�] be an algebraic number �eld extension of K, where � satis�es a certainpolynomial equation of degree m with coe�cients in K. The maximal order oL of Ldoes not always have a K�basis, but at least a K�pseudobasis oL = c1�1+ � � �+ cm�m,where ci is a fractional D�ideal and � 2 L for i 2 Nm . The �i can be expressed in thepowers of �. oL also has a Z�basis of degree nm. This is the corresponding absoluteextension.In the examples, the relative orders used are tabulated by the degrees n and m asm over n, for each degree combination, only one number �eld tower is used.relative number �eld of degree 3 over 3 Let K be the number �eld Q [�],where � satis�es �3 � 10�2 � 3�� 2 = 0. It has discriminant �8180 and classnumber 2. The powers of � form a basis of the maximal order oK.Let L be the number �eld K[�], where � satis�es �3 � 3 = 0. It has therelative discriminant 243oK. The powers of � form a basis of the maximalorder oL.The absolute representation of this number �eld can be found insubsection 6.2.1 as the number �eld of degree 9.relative number �eld of degree 3 over 6 Let K be the number �eld Q [�],where � satis�es �6 + 5�5 � 6�4 � 53�3 + 3�2 + 206�+ 244 = 0. It hasdiscriminant �182099043 and class number 18. A basis of oK is(1; �; �2; �3; !5 = �4+�2 ; !6 = �5+596�4+140�3+487�2+120�+12562740 ).Let L be the number �eld K[�], where � satis�es�3 + (18 + �)�2 + (13 + 6�+ 34�2 + �3)� + 51 + 25�+ �2 = 0. It has therelative discriminant (�460552395 + 207692333�� 184201393�2 �58798978�3 � 461579366!5 + 1056396040!6)oK. The powers of � form abasis of the maximal order oL.relative number �eld of degree 6 over 3 Let K be as in the number �elddenoted with 3 over 3. Let L be the number �eld K[�], where � satis�es�6 + (1 + �)�5 + (�1 + 2�� 4�2)�4 + (5� 5�� 11�2)�3 + (1 + 3�2)�2 + (1 +�� 3�2)� + (��� �2) = 0. It has the relative discriminant(319743143192792 + 1351078531895460�� 134055393145420�2)oK.The maximal order oL has no basis in this case but a pseudobasis:oL = oK + �oK + �2oK + �3oK + �4oK + (� + �2 + �4 + �5)(oK + �+�22 oK).The absolute representation of this number �eld can be found insubsection 6.2.1 as the number �eld of degree 18.relative number �eld of degree 5 over 5 Let K be the number �eld Q [�],where � satis�es �5 + �4 � 4�3 � 14�2 + 3�+ 1 = 0. It has discriminant



6.3. TESTS OF REDUCED NORMAL FORM ALGORITHMS 111�3982352 and class number 5. A basis of oK is(1; �; �2; !4 = �3��2���12 ; !5 = �4+12 ).Let L be the number �eld K[�], where � satis�esx5 � 2�3 + (2+ �� !5)�2 + (13+ 6�+ �2)� + (25 + �� 2�2 � !5) = 0. It hasthe relative discriminant(859894333+788062556��3775373724�2+405937120!4+1052770984!5])oK.The powers of � form a basis of the maximal order oL.The absolute representation of this number �eld can be found insubsection 6.2.1 as the number �eld of degree 25.relative number �eld of degree 11 over 3 Let K be the number �eld Q [�],where � satis�es �3 + 42�+ 154 = 0. It has discriminant �936684 and classnumber 27. The powers of � form a basis of the maximal order oK.Let L be the number �eld K[�], where � satis�es�11 + (��+ �2)�7 + (1� 2�2)�5 + �3 + (1 + �)�2 + 2 = 0. It has the relativediscriminant (�5026607178781425437532995371220�2214443634236656662286177134952��181441187670086041490986084120�2)oK.The maximal order oL has no basis in this case but only a pseudobasis:oL = oK + �oK + �2oK + �3oK + �4oK + �5oK + �6oK + �7oK + �8oK + �9oK +(� + �2 + �4 + �10)(oK + �22 oK).The absolute representation of this number �eld can be found insubsection 6.2.1 as the number �eld of degree 33.6.3.2 Ideal test setsThe ideal test sets are generated in analogy to the sets for absolute ideals in subsec-tion 6.2.2.Again 0 refers to prime ideals over small prime numbers (viewed as absolute ideals).1 refers to products of 2 prime ideals, 2 to products of 4 prime ideals and so on.As described in 6.2.3 two ideals are chosen randomly from the ideal test set a certainnumber of times (entered in a separate column). The average of the computationtimes of all repetitions is used for the particular method.6.3.3 Relative timesTo improve the clarity of the table it does not contain the computation times foreach of the methods directly but as factors in relation to the fastest method. Thefastest method can be identi�ed as the column with the relative time 1. The actualtime (in milliseconds) of the fastest method is entered in a separate column.Note that in these test di�erent computers were used. Thus, the computation timeof the fastest method must be seen in relation to the speed of the computer (columnmarked relidmark, see subsection 6.1).If no factor is entered in the table the particular method was excluded from the testrun, for two possible reasons:



112 CHAPTER 6. EXAMPLES� Methods likely to be very slow were excluded, such that either a completetest run was possible at all, or such more repetitions were possible to increasethe reliability of the result.� Method �Cg� was occasionally excluded because of its high correlation to the�C1� method.Note that on several occasions two test runs have been performed for the sameideal test set. The �rst run included all methods, with only a small repetition countpossible. The second run excluded the slower methods to obtain a higher repetitionnumber.base �eld degreerelative degreeideal test settest operationtime of the fastest method for this example (in ms)relidmark of the computer used, *1000repetition counttime in relation to the fastest methodC1 B1 C B Cg Cr3 3 0 + 7.7 74 400 6.03 11.93 4.59 5.31 4.85 13 3 1 + 18.0 74 400 2.97 5.82 2.36 2.85 2.62 13 3 2 + 49.1 74 400 1.60 2.01 1 1.18 1.71 1.083 3 3 + 129.0 74 400 1.68 2.41 1 1.11 2.19 1.43 3 4 + 270.3 74 400 1.67 3.18 1 2.21 2.38 1.543 3 5 + 589.6 74 400 1.72 16.80 1 10.38 2.57 1.533 3 6 + 393.8 234 211 2 15.71 1 9.21 2.89 1.733 3 0 * 121 74 400 1.78 1.84 1.68 1 2.04 2.013 3 1 * 276.2 74 400 1.35 1.41 1.64 1 1.67 1.573 3 2 * 839.4 74 400 1 1.47 1.48 1.34 1.43 1.063 3 3 * 522.5 234 400 1.07 4.54 1.79 3.46 1.52 13 3 4 * 943.1 234 267 1.19 9.53 2.08 6.8 1.73 13 3 5 * 1722 234 129 1.15 12.11 2.39 8.44 1.69 13 3 6 * 4232 234 66 1.11 6.82 2.91 8.6 1.63 16 3 0 + 18.8 100 400 10.42 16.68 5.99 10.95 6.8 16 3 1 + 62.9 100 400 4.39 6.77 2.41 9.36 3 16 3 2 + 445 100 400 1.69 2.5 1 6.52 1.71 1.016 3 3 + 765.4 230 113 1.46 3.4 1 10.84 2.29 1.256 3 0 * 2152 100 203 1 2.06 4.19 9.15 1.29 1.546 3 1 * 4786 104 87 1 2.6 6.54 10.43 1.5 1.496 3 2 * 7662 104 21 1 4.37 12.67 13.01 1.41 1.346 3 3 * 11638 230 100 1 7.55 8.34 20.3 1.42 1.06



6.3. TESTS OF REDUCED NORMAL FORM ALGORITHMS 113base �eld degreerelative degreeideal test settest operationtime of the fastest method for this example (in ms)relidmark of the computer used, *1000repetition counttime in relation to the fastest methodC1 B1 C B Cg Cr3 6 0 + 14.4 110 400 6.52 25.08 6.81 11.8 6.47 13 6 1 + 100.8 110 400 1.64 3.54 1.13 2.48 1.76 13 6 2 + 342.9 110 400 1.73 2.68 1 2.36 2.18 1.063 6 0 * 1258 110 25 1 1.65 469 2.63 1.67 1.243 6 1 * 2511 221 18 1.2 1.12 225 2.08 2.04 13 6 2 * 4287 230 10 1.13 1.85 545 26.8 2.71 13 6 2 * 5044 100 96 1.24 3.2 2.51 15 5 0 + 13.6 124 400 7.55 27.8 8.49 16.0 6.42 15 5 1 + 68.8 124 400 2.69 8.31 2.54 6.17 2.43 15 5 2 + 369.9 124 246 1.39 3.47 1.04 25.8 1.63 15 5 3 + 582 221 24 1.39 35.5 1 54.7 2.46 1.235 5 0 * 1854 124 5 1 8.44 844 55.3 1.51 1.635 5 0 * 4056 124 273 1 3.82 1.39 1.145 5 1 * 4560 230 7 1 11.8 967 370 2.33 1.245 5 1 * 8118 230 171 1.11 4.67 15 5 2 * 7695 230 2 1 44.6 2868 880 2.81 1.215 5 2 * 6783 230 20 1.02 33.8 15 5 3 * 10488 230 6 1 97.0 1.183 11 0 + 32.5 200 400 5.25 28.0 5.8 15.75 5.42 13 11 1 + 823.4 200 170 2.06 3.51 1.16 2.8 2.7 13 11 2 + 539.6 200 23 2.05 49.4 1 6.03 3.24 1.23 11 0 * 14856 200 13 1.27 1.24 7.39 2.15 13 11 1 * 22091 200 17 1 4.38 2.35 1.123 11 2 * 70649 234 51 1 15.8 2.60 1.143 11 3 * 35730 230 1 1 1742 3.57 3.07Discussion� Method C1 wins for multiplication of large ideals and large orders. It is rel-atively fast in all test so it might be used as a general method for CHNFcomputation. The worst factors for this method appear for the addition ofsmall ideals. This is due to the obvious fact that reduction is not worthwileif the pseudomatrix is sparse and has entries of small absolute value.� Method B1 is always slower than C1 (with the exception of one test run, butwith an insigni�cant di�erence). Therefore the Bosma�Pohst algorithm is



114 CHAPTER 6. EXAMPLESnot particularly suited for reduction, although, for large examples, it is betterthan the Bosma�Pohst algorithm without reduction.� Method Cr wins for addition of small ideals for all orders. This is partly dueto the fact that one is detected as a reducer and can be used e�ciently. Italso wins for multiplications of small ideals and small orders, in particular ifthe base �eld is large and the relative degree is small. These results can beexplained by the fact that Cr includes a cheap reduction, which might not beas e�ective as the reduction in C1.� Method C wins the addition of larger ideals. Reduction seems not be e�ectiveif the pseudomatrix has not many columns but the reducer is very large. Thismight be due to the fact that the Cohen algorithm can use the sparsity ofthe example pseudomatrices e�ciently.� Method B wins multiplication of small ideals for small orders. It is particularlye�ective if the base �eld is simple.� Method Cg has a high correlation to C1 and slower in most cases, which isnot surprising from the algorithm.All entries of one row of the table is taken from one KANT�session. If the examples arelarge, the whole session required up to several hours. If this is the case, strange thingsmight happen (see the example order degrees 5 over 5, ideal test set 1, operation *).The �rst run included all methods and only 7 repetitions were possible. In the secondrun methods C, B, and Cg were excluded to obtain 171 repetitions. The interestingpoint is that method C1 is relatively slower than in the �rst run, and method Cr isfaster. The explanation could be as follows.Large computations tend to fragment the memory. If much memory is consumedand the memory is fragmented, the allocation of new memory is much more di�cult.This promotes implementations which do not allocate memory as frequently. Thisseems to be the case here: method C1 is more a�ected by the fragmented memorythan method Cr.Since the comparison of algorithms, not implementations, are intended this e�ectblurs the result. Thus, the strength of this e�ect shows the limitations of the approachto compare algorithms with actual implementations.
6.4 Comparison of di�erent normal form algorithmswithout reducers known in advanceAimTo compare the di�erent normal form algorithm implemented in KANT for pseudo-matrices, where reducers are not known, as opposed to the previous section. Theresults will form a basis for heuristics for the question of which of the algorithms isbest to apply in di�erent situations.



6.4. TESTS OF NORMAL FORM ALGORITHMS 115DesignCompared methodsThe following methods were compared and tabulated using the abbreviations given:C Cohen algorithm (algorithm 4.5.1) without reduction,B Bosma�Pohst algorithm (algorithm 4.5.3) without a reduction,C1 Cohen algorithm (algorithm 4.5.1) with a one ideal reducer (seesubsection 4.8.2) obtained with the method of corollary 4.8.5,B1 Bosma�Pohst algorithm (algorithm 4.5.3) with a one ideal reducer (see sub-section 4.8.2) obtained with the method of corollary 4.8.5,Cr Cohen algorithm (algorithm 4.5.1) with a rational reducer (see subsection 4.8.2)obtained with the method of corollary 4.8.5,Br Bosma�Pohst algorithm (algorithm 4.5.3) with a rational reducer (see subsec-tion 4.8.2) obtained with the method of corollary 4.8.5.r For information, the last column of the table contains the time necessary for thepreparation of the reducer obtained with the method of corollary 4.8.5.6.4.1 Randomly generated pseudomatricesStarting from algebraic number �elds in absolute presentation of degree 2, 3, 5, and10, relative extensions with a relative degree of 2, 3, 5, and 10 are de�ned over eachof the four base �elds to produce an array of 16 relative number �elds.The base �elds have the property that� the generating polynomial has coe�cients with small absolute value;� the order generated by the polynomial is the maximal order of the number�eld;� the class group is nontrivial.Further details of the �elds will not be given here, they will be described in [Hop].The relative extensions are produced with random polynomials which� are relatively sparse, about half of the coe�cients are zero;� have coe�cients of the base �eld with a representation of integers with rela-tively small absolute values.The relative degree corresponds to the number of rows of the �nal example pseudo-matrix which is recorded in the table.For each relative order an ideal A is chosen such that A \ Z is either 2Z or 64777Z.In the table this is indicated as �ideals over 2� or �ideals over 64777�. Using thepseudobasisM = � a1 : : : anA1 : : : An �for each of the ideals, 2n random elements ai 2 ai, for i 2 Nn , are chosen randomlyto produce 2n elements of Mod (M). The pseudomatrix N formed by these elements



116 CHAPTER 6. EXAMPLEStogether with trivial ideals is the example pseudomatrix. N is very likely to beequivalent toM. This pseudomatrix has obviously a very good reducer, the minimumof the ideal A, but it will not be used in this test.The table contains relative times, described in subsection 6.3.3.base �eld degreepseudomatrix dimensionideal overtime of the fastest method for this example (in ms)relidmark of the computer used, *1000time in relation to the fastest methodC B C1 B1 Cr Br r2 2�4 2 8 190 2.38 1 10.5 10 10.5 9.5 82 2�4 64777 16 210 1 1.31 6.69 7.44 5.88 7.25 4.253 2�4 2 27 190 2.56 1 4.81 4.78 5.04 4.48 4.043 2�4 64777 11 210 3.73 1 9.45 9.82 11.09 9.55 7.825 2�4 2 27 190 3.96 1 8.67 9.22 10.37 8.89 85 2�4 64777 32 210 9.06 1 8.56 8.69 10.19 8.06 6.510 2�4 2 590 190 15.61 1 10.31 10.36 11.29 10.34 10.0310 2�4 64777 6822 187 2.17 1 1.69 1.35 1.68 1.32 1.082 3�6 2 22 190 2.27 1 6.59 5.36 5.68 5.09 42 3�6 64777 22 210 3.05 1 9.14 7.05 7.5 6.64 4.593 3�6 2 162 190 1.13 1 1.3 1.15 1.25 1.11 0.933 3�6 64777 28 210 9.21 1 5.96 6.29 7.14 6.25 4.645 3�6 2 148 190 18.13 1 3.22 3.24 3.54 3.11 2.645 3�6 64777 124 210 3.89 1 4.03 4.23 4.32 3.84 2.6110 3�6 2 12430 190 18.57 49.19 1.06 1 1.16 1.02 0.9410 3�6 64777 13810 187 4.79 1.85 1.42 3.62 1 2.15 0.592 5�10 2 43 190 7.56 1 4.98 4.95 4.72 4.77 3.772 5�10 64777 43 210 4 1 7.49 6.91 6.51 6.3 3.883 5�10 2 413 190 322.31 1.05 1.04 1.06 1.16 1 0.683 5�10 64777 420 210 25.24 1 1.67 2.38 1.64 1.79 0.645 5�10 2 890 190 2794.46 1.89 1 1.13 1.06 1.07 0.85 5�10 64777 1220 237 20125.44 1 8.7 5.11 8.6 0.6510 5�10 2 18610 190 6.85 1 1 1.25 1.13 0.9210 5�10 64777 42170 237 2.66 1 2.57 2.69 1.7 0.552 10�20 2 1180 190 1.14 1 1.07 1.01 1.72 0.532 10�20 64777 980 210 1 1.17 1.77 27.93 2.4 0.593 10�20 2 1970 190 105.59 1 1.27 1.2 1.94 0.593 10�20 64777 2990 160 37.15 1 2.57 118 3.68 0.565 10�20 2 5840 190 20.95 1.01 1.27 1 1.29 0.85 10�20 64777 13680 160 12.07 1 4.43 171.1 4.02 0.6810 10�20 2 50160 190 1 1.21 1176.52 4.19 0.810 10�20 64777 86460 210 1 36.5 18.74 0.35



6.5. SHARE OF ABSOLUTE IDEAL MULTIPLICATIONS 117DiscussionA considerable part (half to almost all, with the exception of one case) of the com-putation time of the methods which use a reducer is consumed by the computationof the reducer.Two methods share the smallest computation times: the Bosma�Pohst algorithmwithout reduction and the Cohen algorithm with reduction using an ideal as areducer.If the dimension of the pseudoamtrix is small the Bosma�Pohst algorithm with-out reduction is fastest. If the dimension of the pseudoamtrix is large the Cohenalgorithm using reduction is fastest.For medium dimensions (5�10) the size of the base �eld is important. For smallerbase �elds the Bosma�Pohst algorithm without reduction is faster, for larger base�elds the Cohen algorithm with reduction is faster.6.5 On the importance of absolute ideal multiplications inthe relative normal form computationsAimThis test demonstrates the importance of the e�ciency of the multiplication of ab-solute ideals for the e�ciency of the CHNF.DesignThe results of the pro�ling options of the GNU�C compiler are used. The pro�lecontains the accumulated time for all absolute ideal multiplications and the totaltime for a CHNF�application.The multiplication of relative ideals (given as pseudomatrices) involves the creationof a large pseudomatrix. The CHNF computation of this pseudomatrix forms theactual example pseudomatrix for this test.Use some relative ideals in relative orders already used in the test in section 6.3.1.Example 1Use the relative number �eld of subsection 6.3.1 identi�ed by the degrees 11 over 3.a1 = 14911oK+((�5604�2114��13622�2)+(�5882+4444�+5883�2)�+(�13010�9472�� 12973�2)�2+ (�6978+ 6600�� 11612�2)�3+ (4038+ 7534�+12453�2)�4+(7552+11432��9802�2)�5+(2078+8988�+11884�2)�6+(13834+6258��2750�2)�7+(7218 � 1806� + 13108�2)�8 + (�12502 � 4584� � 322�2)�9 + (�6330 � 10558� �321�2)�)=2oK



118 CHAPTER 6. EXAMPLESa2 = 101269oK+((10419�27252��25219�2)+(4246+33055�+21907�2)�+(�48621�14073��5214�2)�2+(35102+20495�+9289�2)�3+(�15012+14703�+36679�2)�4+(36843 + 12524� + 21543�2)�5 + (45036 + 37594� � 2870�2)�6 + (2711 + 19750� �40548�2)�7 + (47920 � 35796� + 34136�2)�8 + (�27599 + 32510� � 15622�2)�9 +(16609 + 42785�+ 1365�2)�)=2oKThe total relative ideal multiplication uses 38.27s. 6707 absolute ideal multiplicationsused 27.16s. This is a share of 71%.Example 2Use the relative number �eld of subsection 6.3.1 identi�ed by the degrees 5 over 5.a1 = 5865oK+((�353�2463�+854�2+1236�3+2555!)+(�1813�2250�+2381�2�2722�3 � 1222!)� + (303 + 2181� + 745�2 + 2560�3 � 2135!)�2 + (2496� 1598��2679�2 + 833�3 + 1997!)�3 + (2438 + 2904�� 1249�2 + 2553�3 � 2611!)�4)oKa2 = 1615oK+((434� 497�� 387�2+430�3� 255!)+ (155� 125�+442�2+450�3�638!)� + (�429 + 328�� 133�2 � 365�3 + 122!)�2 + (93 + 710�+ 728�2 � 425�3 +245!)�3 + (�384 + 118�� 377�2 + 726�3 � 474!)�4)oKThe total relative ideal multiplication uses 11.87s. 645 absolute ideal multiplicationsused 9.25s. This is a share of 78%.DiscussionThese results clearly stress the importance of the absolute ideal multiplication algo-rithms. Since an important aim of this work is to improve the e�ciency of the normalform algorithm, the results motivate the e�orts for the absolute ideal arithmetic.6.6 Comparison of the two phases in the reduced normalform algorithmAimOn page 85 the two�phases�method was introduced. This test compares the runningtime of each of the two phases. It was mentioned that the second phase is not tooexpensive. This test serves as an argument to this opinion.Design of the testThe relative number �elds of subsection 6.3.1, the ideal test set, described in subsec-tion 6.3.2, and the random pseudomatrices of subsection 6.4.1.A pseudomatrix generated by this method features a good reducer: the minimum ofthe relative ideal (see section 5.4).



6.7. COMPARISON OF RELATIVE IDEAL MULTIPLICATIONS 119An experimental version of KASH was used which has the option of only executingthe �rst phase of a normal form computation.All computation times (in milliseconds) are the result of a single execution of thestandard CHNF�algorithm on a HP900 series 700 computer with 124000 relidmark,see subsection 6.1.base �eld degreerelative degreerelative ideal test settime of the �rst phase total time percentage3 3 0 70 90 783 3 1 80 90 893 3 2 190 210 903 3 3 310 360 863 3 4 440 540 813 3 5 650 770 843 3 6 1180 1420 833 3 7 1750 2190 803 3 8 5230 6480 816 3 0 250 300 836 3 1 240 290 836 3 2 420 560 755 5 0 510 570 895 5 1 740 880 845 5 2 1310 1620 813 6 0 210 250 843 6 1 260 310 843 6 2 410 490 843 11 0 320 460 703 11 1 7400 10310 723 11 2 3080 3610 85
6.7 Comparison of the di�erent multiplication algorithmsfor relative idealsAimThis test is very similar to the comparisons of the di�erent absolute ideal multipli-cation algorithms in subsection 6.2, with relative in place of absolute.The answer will give heuristics for the question how to use the di�erent multiplicationalgorithms to increase the overall time e�ciency of the multiplication for relativeideals.



120 CHAPTER 6. EXAMPLESDesign of the testThe design of this test is identical to the comparison of the absolute ideal multipli-cation in section 6.2 with the following exceptions:� Normal presentations and normal multiplications are not used. These algo-rithms are not yet implemented in KANT.� The relative orders of subsection 6.3.1 are used. The ideal test sets are pro-duced with the method described in subsection 6.3.2.base �eld degreerelative degreenumber of the ideal test setrepetitions per ideal test setspeed of the computer in 1000*relidmarktime (in ms) formultiplication of type transformationbasis mixed four basis!2elt 2elt!basis3 3 00 100 78 145.8 81.7 94.6 18.9 68.83 3 0 100 78 189.6 114 163.4 22.5 80.43 3 1 100 78 416.9 260.4 365.8 29.4 179.83 3 2 50 78 731.6 469.6 612.8 32.2 269.83 3 3 50 78 1420 980.2 1307.6 46.6 403.23 3 4 20 78 2430.5 1647 2261 64 572.53 3 5 20 78 3969 2796.5 4112.5 106.5 11163 3 6 10 78 9204 6440 9538 182 24363 3 7 10 78 14332 10857 16969 300 43543 3 8 10 78 43961 30480 53723 613 119266 3 00 50 186 433.8 199.2 219.6 48.6 308.26 3 0 50 186 497.8 280.8 349.4 58.2 361.26 3 1 50 186 887.6 522 657.8 68.8 558.46 3 2 50 186 2051 1261 1661.4 91.8 846.86 3 3 50 190 4443 3010.4 4429.8 117.6 2277.46 3 4 20 190 10779 7328 10882 292 4398.56 3 5 20 190 23529 15824 24038 723.5 72365 5 00 50 186 2249.4 824.6 1219.8 700.4 733.45 5 0 50 186 3322.8 2028.4 2856.6 1148.8 14755 5 1 20 186 5259.5 3009 3629 466.5 18405 5 2 20 186 7096.5 2888 4348.5 217 16185 5 3 20 190 16878 6666.5 10080.5 321.5 45495 5 4 20 190 33915.5 12932 23740.5 398.5 8808



6.7. COMPARISON OF RELATIVE IDEAL MULTIPLICATIONS 121base �eld degreerelative degreenumber of the ideal test setrepetitions per ideal test setspeed of the computer in 1000*relidmarktime (in ms) formultiplication of type transformationbasis mixed four basis!2elt 2elt!basis3 6 00 100 186 786.1 209.9 308.4 69.7 1563 6 0 100 186 1762.6 444.7 629.2 136.1 279.23 6 1 20 186 2186.5 649 926.5 105 439.53 6 2 20 186 3119.5 1002 1265.5 119 5703 6 3 10 190 8231 2614 3695 223 14393 6 4 10 190 12819 4292 6120 206 17903 6 5 10 190 27112 8923 14338 372 36963 6 6 10 190 62876 20206 29037 989 83133 11 00 50 186 8403.6 1449.8 2104 895.2 1157.83 11 0 20 186 11053 1838.5 2744.5 1073 1097.53 11 1 20 186 24323.5 6008 6557 1785 2958.53 11 2 10 186 33079 13080 8237 1960 40903 11 3 10 190 85828 19537 21860 3766 9327DiscussionThe table shows that the mixed presentation method is quite superior. But subse-quent tests drew another picture:� There are huge run time di�erences for the mixed multiplication algorithmfor all of the tested relative orders except for the order 3 over 3. For the order3 over 6 they di�er by a factor of 200, for the order 6 over 3 by a factor 4000,and for the order 5 over 5 by a factor of 5000. Some ideal multiplications inorder 11 over 3 could not be �nished which guarantees a factor of at least1000000.� The run time di�erences are the result of ill�behaved two�element presenta-tions. Ideals with well�behaved two element presentations can e�ciently bemultiplied with any ideal given in basis presentation.� The randomly chosen ideals in the above table seemed to have missed theextremely ill�behaved two�element presentations in most cases. This appearsas a good average performance of the algorithm.� Ill�behaved two�element presentations do not occur for absolute ideals.Therefore they appear to be a property of relative presentations of algebraicnumbers.� Ill�behaved two�element presentations also trouble the four generators mul-tiplication algorithm.



122 CHAPTER 6. EXAMPLES6.8 Comparison of the e�ciency of relative idealmultiplication to absolute ideal multiplicationAimWhich is faster, the relative or the absolute multiplication? How does it depend onthe size of the algebraic number �eld and the ideals? Is it therefore worth dealingwith relative extensions for the purpose of ideal multiplications?DesignThe 16 relative number �elds introduced in subsection 6.4.1 are used and tabulatedas m over n, where m is the relative degree and n the degree of the base �eld.For each relative order �ve ideals A are chosen such that A \ Z is 2Z, 14Z, 174Z,1296Z, or 88642Z. The ideal is tabulated in the column �ideals over� with the cor-responding natural number.Using the method of subsection 5.2.2, for each relative ideal a corresponding absoluteideal is obtained.The test compares the running times (�times for mult�) of the multiplication of twoideals in relative representation (�rel�) and in absolute representation (�abs�). Thetabulated times are measured in milliseconds on the same computer, with 190000relidmark. Transformation times from absolute to relative representations and vice�versa are not considered. The last column contains the quotient of the time for therelative multiplication by the time for the absolute multiplication.For both relative and absolute multiplication only one algorithm is used (the onewhich is the default for KANT computations). It is a combined algorithm using theheuristics obtained from the tests in sections 6.2 and 6.7.For the smaller examples, the table contains the average time of up to 10 multipli-cations of randomly chosen ideals.



6.8. COMPARISON RELATIVE/ABSOLUTE IDEAL MULTIPLICATION 123base �eld degreerelative extension degreeideals overtimes for mult quotientrel abs rel/ abs2 2 2 14 1.0 13.52 2 21 26 1.5 17.12 2 455 35 1.8 18.82 2 60214 47 4.0 11.72 2 1125443 43 4.8 8.832 3 2 22 3.2 7.122 3 21 65 4.4 14.82 3 455 114 6 19.02 3 60214 174 20 8.522 3 1125443 106 26 3.972 5 2 143 15 9.22 5 21 281 21 13.22 5 455 470 36 12.92 5 60214 708 96 7.312 5 1125443 558 147 3.782 10 2 1183 170 6.932 10 21 4142 488 8.482 10 455 7653 720 10.62 10 60214 10133 1556 6.502 10 1125443 8533 2510 3.393 2 2 19 3.7 5.163 2 21 38 5 7.623 2 455 56 7.5 7.583 2 60214 99 23 4.293 2 1125443 115 30 3.773 3 2 57 13 4.383 3 21 81 15 5.23 3 455 121 30 4.063 3 60214 347 86 43 3 1125443 412 108 3.793 5 2 292 63 4.583 5 21 521 81 6.423 5 455 860 162 5.293 5 60214 1783 544 3.273 5 1125443 1770 667 2.653 10 2 2770 380 7.283 10 21 5560 650 8.553 10 455 10560 1350 7.823 10 60214 12770 4740 2.693 10 1125443 9530 4440 2.14

base �eld degreerelative extension degreeideals overtimes for mult quotientrel abs rel/ abs5 2 2 53 20 2.665 2 21 126 30 4.225 2 455 176 43 4.075 2 60214 270 116 2.315 2 1125443 390 173 2.255 3 2 330 80 4.125 3 21 350 150 2.335 3 455 370 200 1.855 3 60214 800 530 1.505 3 1125443 1520 730 2.085 5 2 220 450 0.4885 5 21 1510 540 2.795 5 453 2510 760 3.305 5 60214 3070 2770 1.105 5 1125443 3750 3250 1.155 10 2 8440 4340 1.945 10 21 16880 5410 3.125 10 453 14500 8870 1.635 10 60214 32230 37170 0.8675 10 1125443 13830 25940 0.53310 2 2 560 116 4.810 2 21 796 210 3.7910 2 455 1443 300 4.8110 2 60214 2343 1070 2.1910 2 1125443 3413 1836 1.8510 3 3 1010 1230 0.82110 3 23 1080 1860 0.58010 3 453 4510 1830 2.4610 3 60213 6280 5420 1.1510 3 1125443 10120 9570 1.0510 5 3 5790 6600 0.87710 5 21 20590 7030 2.9210 5 455 25440 10460 2.4310 5 60213 39530 30220 1.3010 5 1125443 32780 66280 0.49410 10 3 38360 91740 0.41810 10 23 46560 688240 0.067610 10 453 65680 148030 0.44310 10 60213 301960 295830 1.02



124 CHAPTER 6. EXAMPLESDiscussionFor larger number �elds the relative multiplication, for smaller number �elds theabsolute multiplication is faster.6.9 Comparison KASH and gp of modular and nonmodularrelative normal form computationsAimThere are pseudomatrix normal form algorithms implemented in gp, see [BCDO98].By comparing running times, it is possible to evaluate if the e�orts to improve thee�ciency of normal form algorithms have proved to be e�ective.DesignThe pseudomatrices of subsection 6.4.1 are used. Again the degree of the base �eld,the dimension of the pseudomatrix, and the minimal natural number of the relativeideal which is represented by the pseudomatrix are tabulated.The column marked �non-mod� refers to the normal form algorithm without reduc-tion. The column �det-mod� refers to the combined computation time for obtaininga reducer with the gcd of a few minors and computing the normal form using thisreducer. The column �or-mod� refers to normal form computation with a very goodreducer which is the minimum of the above relative ideal.All computation times are in milliseconds on a computer with 149000 relidmark.The following abbreviations are used in the table.non-mod Using a normal form algorithm without a reducer.det-mod Using a reducer obtained with minor computations.mod Using a reducer assumed to be known in advance which is the minimum of therelative ideal represented by the pseudomatrix. This is not applicable to gpsince a reducer which is an integral multiple of the rank minor gcd is requiredfor the reduction algorithm.1 The computation does not terminate in an acceptable time which is at least 100times of the time needed by another time the test of a similar di�culty.over�ow A typical message in gp is: �The stack over�ows. Doubling the stack size.�If this message occurs with an initial stacksize of 32MB, which is as much asthe test computer as usually available for a gp process, �over�ow� is tabulated.error Other error messages, which indicate inconsistencies in the representations ofideals or algebraic numbers.



6.9. COMPARISON OF KASH AND GP 125base �eld degreepseudomatrix dimensiontest ideals over computation times in msKASH gpnon-mod det-mod mod non-mod det-mod2 2�4 2 10 120 20 10 502 2�4 64777 40 150 30 20 403 2�4 2 20 180 0 140 error3 2�4 64777 10 170 20 90 705 2�4 2 30 330 20 550 5105 2�4 64777 50 360 80 390 26010 2�4 2 750 7990 210 14320 over�ow10 2�4 64777 6960 13160 10 11900 94702 3�6 2 40 210 0 80 1102 3�6 64777 30 260 70 50 1103 3�6 2 240 330 0 430 error3 3�6 64777 40 240 50 210 2005 3�6 2 200 650 90 1790 7905 3�6 64777 170 640 230 940 69010 3�6 2 1586160 17730 10 100920 2234010 3�6 64777 22920 22010 2230 27260 185902 5�10 2 60 300 40 320 error2 5�10 64777 70 420 110 220 2703 5�10 2 640 610 50 5440 8803 5�10 64777 520 950 220 1000 7905 5�10 2 2270 1450 240 8390 22705 5�10 64777 1 1600 360 14860 451010 5�10 2 270440 21890 90 970400 3559010 5�10 64777 176250 49080 7240 295670 500102 10�20 2 1800 1810 490 23590 15302 10�20 64777 1310 1370 650 11590 12703 10�20 2 767640 2880 220 80890 error3 10�20 64777 76640 2460 800 32320 38705 10�20 2 200150 5200 1130 951390 error5 10�20 64777 117700 6730 3900 130140 1565010 10�20 2 1 83520 1290 1 47048010 10�20 64777 1 126380 70070 1 210690Discussionnon�modular method While the implementation in KANT is faster on averageand in more cases there are large runtime di�erences in both directions. Largecomputations su�er from several irregularities:



126 CHAPTER 6. EXAMPLES� Fragmented memory slows down the computation extremely if a largerpart of the available memory is used. This is in�uenced mainly by thestructural decisions for the memory managemant of the system.� The behavior of basic algorithms (integer HNF computation, long integerarithmetic) for large numbers becomes much more important for largeexamples. The basic algorithms can be implemented in several variantsnone of which is perfect for all examples. The variant chosen has a greate�ect of the runtime for the normal form algorithm.These irregularities a�ect gp and KANT to a di�erent extent. Therefore theconcept of comparing implementations in di�erent systems with the aim ofcomparing algorithms is quite restricted.modular method with determinant The computation times are quite similar.non�modular method While not implemented in gp the times for this method arevery small. This stresses the importance to obtain reducers in advance to thenormal form computation which is possible in many applications.
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