Algebraic Attacks on linear RFID Authentication Protocols

Matthias Krause and Dirk Stegemann

University of Mannheim (Germany)

10th GI-Kryptotag March 20, 2009 Technische Universität Berlin, Germany

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Challenge-Response Authentication Protocols

A passive attacker

- collects a set O of observed challenge/response pairs
- cannot manipulate the communication
- tries to forge valid responses

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Idea of Linear Authentication Protocols

Prover and Verifier agree on L linear *n*-dim. subspaces of $\{0,1\}^m$.

Problems:

- $V_1 + \ldots + V_L$ too small \Rightarrow responses w efficiently distinguishable from random values
- $V_1 + \ldots + V_L$ too large \Rightarrow Pr[successful faugery] too high

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Linear (n, k, L) Authentication Protocols

Prover and Verifier agree on *L* lin. *n*-dim. subspaces of $\{0,1\}^{n+k}$. **Observation**: Any linear subspace $V_I \subseteq \{0,1\}^{n+k}$ can be represented by a linear mapping $f_I : \{0,1\}^n \to \{0,1\}^k$ and a permutation $\sigma_I \in S_{n+k}$ such that $V_I = \{\sigma_I(v||f_I(v)), v \in \{0,1\}^n\}$.

Linear (n, k, L) Authentication Protocols

Prover and Verifier agree on *L* lin. *n*-dim. subspaces of $\{0,1\}^{n+k}$. **Observation**: Any linear subspace $V_I \subseteq \{0,1\}^{n+k}$ can be represented by a linear mapping $f_I : \{0,1\}^n \to \{0,1\}^k$ and a permutation $\sigma_I \in S_{n+k}$ such that $V_I = \{\sigma_I(v||f_I(v)), v \in \{0,1\}^n\}$.

Special Case: The CKK² Protocol

proposed by Cichoń, Klonowski and Kutyłowski at Pervasive 2008 CKK^2 is a linear (n + k, k, 2) protocol with

- $f_1 = f_2 = f$
- *f* depends only on the first *n* inputs.
- σ_1 exchanges the last two *k*-bit blocks. $\sigma_2 = id$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Special Case: The CKK² Protocol

proposed by Cichoń, Klonowski and Kutyłowski at Pervasive 2008 CKK^2 is a linear (n + k, k, 2) protocol with

- $f_1 = f_2 = f$
- *f* depends only on the first *n* inputs.
- σ_1 exchanges the last two *k*-bit blocks. $\sigma_2 = id$

Implications:

•
$$V_1 = \{(v||a||b)|v \in \{0,1\}^n, a = f(v), b \in \{0,1\}^k\}$$

 $V_2 = \{(v||a||b)|v \in \{0,1\}^n, a \in \{0,1\}^k, b = f(v)\}$

f(v) can be written as

$$f(v) = c \cdot a \oplus (1 \oplus c) \cdot b \text{ with } c \in \{0, 1\}$$
$$= c(a \oplus b) \oplus b$$

A polynomial Time Attack on CKK² — Basic Idea

Collect a set of responses $O = \{(v_1||a_1||b_1), \dots, (v_m||a_m||b_m)\}$. Observations:

- Already for m slightly larger than n, {v₁,..., v_m} contains a basis of {0, 1}ⁿ with high probability.
- With a basis $\{v_1, \ldots, v_n\}$ of $\{0, 1\}^n$, any $v \in \{0, 1\}^n$ can be written as $v = \bigoplus_{d \in D} v_d$ with $D \subseteq \{1, \ldots, n\}$, and

A polynomial Time Attack on CKK² — Basic Idea

Collect a set of responses $O = \{(v_1||a_1||b_1), \dots, (v_m||a_m||b_m)\}$. Observations:

- Already for m slightly larger than n, {v₁,..., v_m} contains a basis of {0, 1}ⁿ with high probability.
- With a basis $\{v_1, \ldots, v_n\}$ of $\{0, 1\}^n$, any $v \in \{0, 1\}^n$ can be written as $v = \bigoplus_{d \in D} v_d$ with $D \subseteq \{1, \ldots, n\}$, and

$$f(v) = c(a \oplus b) \oplus b$$

$$\Leftrightarrow \bigoplus_{d \in D} f(v_d) = c(a \oplus b) \oplus b$$

$$\Leftrightarrow \bigoplus_{d \in D} (c_d(a_d \oplus b_d) \oplus b_d)) = c(a \oplus b) \oplus b$$

$$\Leftrightarrow \bigoplus_{d \in D} (c_d(a_d \oplus b_d)) \oplus c(a \oplus b) = \bigoplus_{d \in D} b_d \oplus b$$

yields k equations in the unknowns $c_1, \ldots, c_n, c_n, c_n, c_n$

A polynomial Time Attack on CKK²

repeat

Obtain a response (v||a||b). **until** a basis $\{v_1, \ldots, v_n\}$ of $\{0, 1\}^n$ is found. Initialize a system of linear equations LES in c_1, c_2, \ldots

A polynomial Time Attack on CKK²

repeat

Obtain a response (v||a||b).

until a basis $\{v_1, \ldots, v_n\}$ of $\{0, 1\}^n$ is found. Initialize a system of linear equations LES in c_1, c_2, \ldots

repeat

Obtain a response (v||a||b) with $v \notin \{v_1, \ldots, v_n\}$. Add the k equations given by

$$igoplus_{d\in D} (c_d(a_d\oplus b_d))\oplus c(a\oplus b) = igoplus_{d\in D} b_d\oplus b$$

to LES. **until** LES has full rank.

A polynomial Time Attack on CKK²

repeat

Obtain a response (v||a||b).

until a basis $\{v_1, \ldots, v_n\}$ of $\{0, 1\}^n$ is found. Initialize a system of linear equations LES in c_1, c_2, \ldots

repeat

Obtain a response (v||a||b) with $v \notin \{v_1, \ldots, v_n\}$. Add the k equations given by

$$igoplus_{d\in D} (c_d(a_d\oplus b_d))\oplus c(a\oplus b) = igoplus_{d\in D} b_d\oplus b$$

to LES.

until LES has full rank.

Compute the images of the basis vectors as

$$f(v_i) = c_i(a_i \oplus b_i) \oplus b_i$$
 for $i \in \{1, \dots, n\}$.

Recover f w.r.t. the standard basis of $\{0,1\}_{n}^{n}$.

Another polynomial Time Attack on CKK²

Let f be defined by the component functions $f^r : \{0,1\}^n \to \{0,1\}$, $r \in \{1,\ldots,k\}$, i.e., $f(v) = (f^1(v),\ldots,f^k(v))$.

Observation: If a response $(v||(a^1, ..., a^k)||(b^1, ..., b^k))$ satisfies $a^r = b^r$ for some r, then we know that $f^r(v) = a^r = b^r$.

Another polynomial Time Attack on CKK²

Let f be defined by the component functions $f^r : \{0,1\}^n \to \{0,1\}$, $r \in \{1,\ldots,k\}$, i.e., $f(v) = (f^1(v),\ldots,f^k(v))$.

Observation: If a response $(v||(a^1, \ldots, a^k)||(b^1, \ldots, b^k))$ satisfies $a^r = b^r$ for some r, then we know that $f^r(v) = a^r = b^r$.

Idea: Recover the component functions separately.

for
$$r \in \{1, \ldots, k\}$$
 do

repeat

Obtain a response $(v||(a^1, ..., a^k)||(b^1, ..., b^k))$ with $a^r = b^r$ until a basis of $\{0, 1\}^n$ is found. Recover f^r w.r.t. the standard basis. end for

Performance of the CKK² Attacks

Main observations:

- The most costly operations are Gaussian eliminations.
- Rather few responses are needed to recover the secret function *f*
- A straightforward Magma implementation shows

	(<i>n</i> , <i>k</i>)	#responses	attack time
first attack	(128, 30)	pprox 140	pprox 0.05 s
	(1024, 256)	pprox 1039	pprox 2.95 s
second attack	(128, 30)	pprox 311	pprox 0.3 s
	(1024, 256)	pprox 2197	$pprox 179~{ m s}$

• (n, k) = (128, 30) was suggested for practical application.

 \rightarrow Don't use CKK^2 in practice.

Attacks on general (n, k, 2) Protocols

Problems of the general (n, k, 2) case:

- A single response $\sigma_1(v||f_1(v))$ does not say anything about $\sigma_2(v||f_2(v))$ and vice versa.
- The positions of dependent bits (=bits that belong to v) and independent bits (=bits that belong to f(v)) in a single response are unknown.

First Step: Attack on linear (n, 1, 2) Protocols

Assume that $\sigma_1 = \sigma_2 = id$ and consider a set of responses

$$O=\{(v_1||w_1),\ldots,(v_m||w_m)\}$$
 with $w_i\in\{0,1\}$.
For $x_i:=f_1(v_i)$ and $y_i:=f_2(v_i)$ it holds that

$$(w_i \oplus x_i)(w_i \oplus y_i) = 0$$
 for all $i \in \{1, \ldots, n\}$,

which leads to quadratic equations in the unknowns x_i , y_i .

- ロ ト - 4 回 ト - 4 □ - 4

First Step: Attack on linear (n, 1, 2) Protocols

Assume that $\sigma_1 = \sigma_2 = id$ and consider a set of responses

$$O = \{(v_1||w_1), \ldots, (v_m||w_m)\}$$
 with $w_i \in \{0,1\}$.

For $x_i := f_1(v_i)$ and $y_i := f_2(v_i)$ it holds that

$$(w_i \oplus x_i)(w_i \oplus y_i) = 0$$
 for all $i \in \{1, \ldots, n\}$,

which leads to quadratic equations in the unknowns x_i , y_i .

Observation: A symmetry-avoiding linearization allows to recover the secret functions f_1 and f_2 efficiently.

Performance for n = 128: Approx. 8390 responses and 4 minutes of computation

Extension to linear (n, k, 2) Protocols

Basic ideas:

repeat

Guess a dependent position w.r.t. V_1 and V_2 and apply the (n + k - 1, 1, 2) attack.

until (n + k - 1, 1, 2) attack successful

Use the result to distinguish responses from V_1 and V_2 .

Recover specifications for V_1 and V_2 from the respective responses.

More details in M. Krause and D. Stegemann: *Algebraic Attacks against Linear RFID Authentication Protocols*, Workshop Record of the Dagstuhl Seminar on Symmetric Cryptogaphy, 2009.

Future Work

- How to extend the attack ideas to efficient attacks for L > 2?
- What about active attacks against linear (n, k, L) protocols?
- How do linear (*n*, *k*, *L*) protocols (and their security properties) relate to the HB family of authentication protocols?

• . . .

The End.

krause@th.informatik.uni-mannheim.de dstegema@th.informatik.uni-mannheim.de

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ