[back] [prev] [next] [index] [root]
WeierstrassP
Calculates the value of the Weierstrass \wp-function
related to the given lattice.
Syntax:
u := WeierstrassP(z, w1, w2);
| complex |
u |
|
| complex |
z |
a non-zero element of the complex torus C/Zw_1oplusZw_2 |
| complex |
w1,w2 |
complex values with Im(w_1/w_2)>0 |
Description:
Let z, w_1 and w_2 be complex numbers with
Im(w_1/w_2)>0 and with z \notin
Zw_1oplusZw_2. The value of the Weierstrass
\wp-function \wp(z;Zw_1oplusZw_2) is then a
well-defined complex number. It is calculated by use of
the infinite q-expansion of \wp described in
cite[Chapt.~4.2, Prop.~3]{LangEF},
where the precision of the calculated
value depends on that of the defining complex field.
Example:
Compute \wp(\sqrt{-11}; (1+\sqrt{-11})Z oplus 12Z):
kash> z := Sqrt(-11);
3.316624790355399849114932736670686683927088545589*i
kash> w1 := 1+Sqrt(-11);
1 + 3.316624790355399849114932736670686683927088545589*i
kash> w2 := Comp(12,0);
12
kash> WeierstrassP(z,w1,w2);
> 1.018219365756141747667075554911574076310206321785 + 0.03622971784813503226915\
102443845385206504756332*i
<- back[back] [prev] [next] [index] [root]