[back] [prev] [next] [index] [root]
sg := RayClassFieldSplittingField(G, l);
AbelianGroup | sg |
|
AbelianGroup | G |
quotient of RayClassGroupToAbelianGroup |
list | l |
of automorphisms. Must be complete, not just generators. |
kash> o := OrderMaximal(Z, 2, 10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> OrderAutomorphisms(o); [ [0, 1], [0, -1] ] kash> p3 := Factor(3*o)[2][1]; <3, [2, 1]> kash> G1 := RayClassGroupToAbelianGroup(p3, [2]); RayClassGroupToAbelianGroup(<3, [2, 1]>, [ 2 ]) Group with relations: [4] kash> G2 := RayClassFieldSplittingField(G1); Group with relations: [4 0] [0 2] [4 0] [0 2] kash> RayClassFieldIsNormal(G1); false kash> RayClassFieldIsNormal(G2); true kash> O1 := RayClassField(G1); [ x^4 + [8, 4]*x^2 + [28, 8] ] kash> Galois(OrderAbs(Order(O1[1]))); > "1/2[2^3]E(4)"
<- back[back] [prev] [next] [index] [root]