[back] [prev] [next] [index] [root]

 


RayClassFieldSplittingField

Computes data to get the splitting field of the Ray Class Field.

Syntax:

sg := RayClassFieldSplittingField(G, l);

AbelianGroup
  sg  
AbelianGroup
  G  
quotient of RayClassGroupToAbelianGroup
list
  l  
of automorphisms. Must be complete, not just generators.

Description:

no detailed description available yet


Example:


kash> o := OrderMaximal(Z, 2, 10);
Generating polynomial: x^2 - 10
Discriminant: 40 

kash> OrderAutomorphisms(o);
[ [0, 1], [0, -1] ]
kash> p3 := Factor(3*o)[2][1];
<3, [2, 1]>
kash> G1 := RayClassGroupToAbelianGroup(p3, [2]);
RayClassGroupToAbelianGroup(<3, [2, 1]>, [ 2 ])
Group with relations:
[4]
kash> G2 := RayClassFieldSplittingField(G1);
Group with relations:
[4 0]
[0 2]
[4 0]
[0 2]
kash> RayClassFieldIsNormal(G1);
false
kash> RayClassFieldIsNormal(G2);
true
kash> O1 := RayClassField(G1);
[ x^4 + [8, 4]*x^2 + [28, 8] ]
kash> Galois(OrderAbs(Order(O1[1])));
> "1/2[2^3]E(4)"


<- back[back] [prev] [next] [index] [root]