[back] [prev] [next] [index] [root]

 


RayClassFieldIsCentral

Tests whether the Ray Class Field defined by the given data will be a central extension.

Syntax:

flag := RayClassFieldIsCentral(G [, l]);

boolean
  flag  
AbelianGroup
  G  
a quotient from RayClassGroupToAbelianGroup
list
  l  
of automorphisms, if not present all known automorphisms are used.

Description:

no detailed description available yet


Example:

We'll investigate the ray class field mod m := (6)\p|1^\infty\p|2^\infty in k := Q(\sqrt{10}):

kash> o := OrderMaximal(Z, 2, 10);
Generating polynomial: x^2 - 10
Discriminant: 40 

kash> OrderAutomorphisms(o);
[ [0, 1], [0, -1] ]
kash> G1 := RayClassGroupToAbelianGroup(6*o, [1, 2]);
RayClassGroupToAbelianGroup(<6>, [ 1, 2 ])
Group with relations:
[2 0 0]
[0 4 0]
[0 0 2]
kash> rcg := FindMaximalCentralField(G1);
[2 0 0]
[0 2 0]
[0 0 2]
[0 0 0]
[0 0 0]
[0 0 0]
kash> G2 := AbelianQuotientGroup(G1, AbelianSubGroup(G1, rcg));
Group with relations:
[2 0 0]
[0 2 0]
[0 0 2]
[0 0 0]
[0 0 0]
[0 0 0]
[2 0 0]
[0 4 0]
[0 0 2]
kash> RayClassFieldIsCentral(G1);
false
kash> RayClassFieldIsCentral(G2);
> true


<- back[back] [prev] [next] [index] [root]