[back] [prev] [next] [index] [root]
flag := RayClassFieldIsCentral(G [, l]);
boolean | flag |
|
AbelianGroup | G |
a quotient from RayClassGroupToAbelianGroup |
list | l |
of automorphisms, if not present all known automorphisms are used. |
kash> o := OrderMaximal(Z, 2, 10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> OrderAutomorphisms(o); [ [0, 1], [0, -1] ] kash> G1 := RayClassGroupToAbelianGroup(6*o, [1, 2]); RayClassGroupToAbelianGroup(<6>, [ 1, 2 ]) Group with relations: [2 0 0] [0 4 0] [0 0 2] kash> rcg := FindMaximalCentralField(G1); [2 0 0] [0 2 0] [0 0 2] [0 0 0] [0 0 0] [0 0 0] kash> G2 := AbelianQuotientGroup(G1, AbelianSubGroup(G1, rcg)); Group with relations: [2 0 0] [0 2 0] [0 0 2] [0 0 0] [0 0 0] [0 0 0] [2 0 0] [0 4 0] [0 0 2] kash> RayClassFieldIsCentral(G1); false kash> RayClassFieldIsCentral(G2); > true
<- back[back] [prev] [next] [index] [root]