[back] [prev] [next] [index] [root]
a:=RayClassFieldIsAbelian(G [,m]);
AbelianGroup | G |
defining a class group |
boolean | a |
|
integer | m |
kash> o:=OrderMaximal(x^2-10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> G:=RayClassGroupToAbelianGroup(9*o); RayClassGroupToAbelianGroup(<9>, [ ]) Group with relations: [2 0] [0 3] kash> RayClassFieldAbelianTest(G); true
kash> L:=RayClassField(G); [ x^2 - 2, x^3 - 3*x - 1 ]
kash> g:=PolyMove(L[2], Z); x^3 - 3*x - 1 kash> OrderAutomorphismsAbel(Order(g)); true kash> o:=OrderMaximal(x^4-2); Generating polynomial: x^4 - 2 Discriminant: -2048 kash> G:=RayClassGroupToAbelianGroup(9*o); RayClassGroupToAbelianGroup(<9>, [ ]) Group with relations: [3 0] [0 3] kash> RayClassFieldIsAbelian(G); false
<- back[back] [prev] [next] [index] [root]