[back] [prev] [next] [index] [root]

 


OrderSplittingField

Computes the normal closure of an algebraic number field.

Syntax:

O := OrderSplittingField (o);

order
  O  
order
  o  

Description:

Let o be an absolute order. The OrderSplittingField function computes an equation order of the normal closure of the quotient field of o.


Example:

Computation of an equation order O of the normal closure of the quotient field of the absolut order o and the factorization of the generating polynomial f for o in O

kash> o := Order(Z,3,2);
Generating polynomial: x^3 - 2

kash> O := OrderSplittingField(o);
Generating polynomial: x^6 - 3*x^5 + 5*x^3 - 3*x + 1
Discriminant: -34992 

kash> f := PolyMove(x^3-2, O );
x^3 - 2
kash> Factor(f);
> [ [ x + [-1, -1, 1, 0, 0, 0], 1 ], [ x + [5, -5, -10, 3, 5, -2], 1 ], 
  [ x + [-4, 6, 9, -3, -5, 2], 1 ] ]


<- back[back] [prev] [next] [index] [root]