[back] [prev] [next] [index] [root]

 


OrderRelNormEq

Calculates an element of given norm.

Syntax:

elt := OrderRelNormEq(O,n [, "true"]);

order
  O  
list
  elt  
list of elements in O
element
  n  
element in coefficient ring of O

Description:

Let o be the coefficient order of O and O a simple relative extension. This means that o is an absolute extension. (Thus not Z!) Let f and F be the quotient fields of o and O. This function computes for a given n \in o an element elt \in O with N^{F/f}(elt) = n. If no such element exists an empty list is returned. If "true" is set we try to find an integral element. Sometimes two solutions are returned. That is if the reduced version is different from the non-reduced version.


Example:


kash> o:= Order(Z, 2, 2);
Generating polynomial: x^2 - 2

kash> O:= Order(o, 2, 3);
      F[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 3
E 1[ 1]     x^2 - 2

kash> n := Elt(o, [-3856938, 1576756]);
[-3856938, 1576756]
kash> elt := OrderRelNormEq(O,n);
> [ [[-3961, -4022], [3679, 1372]], [[-449, 140], [361, -786]] ]


<- back[back] [prev] [next] [index] [root]