[back] [prev] [next] [index] [root]

 


OrderKextModularPower

Computes a maximal exponent.

Syntax:

L := OrderKextModularPower(pI, mu);

list
  L  
containing alpha and l
ideal
  pI  
a prime ideal
algebraic element
  mu  

Description:

Given an prime ideal \p\subset o and an integral element \mu\ino\setminus\p, such that zeta|p\ino for the prime number p dividing \p. This function will compute the maximal exponent l <= pfrac {v|{\p\;}(p)}{p-1} such that there is an \alpha subject to \alpha^p\equiv\mu \pmod {\p^l}. \alpha and l will be returned. This function is useful mainly in the context of Kummer extensions, where conditions like the above are used to compute the discriminant and the splitting of \p. This is based on cite[p 50]{Dabe2}.


Example:


kash> o := OrderCyclotomic(7);;
kash> pI := Factor(7*o)[1][1];
<7, [6, 1, 0, 0, 0, 0]>
kash> mu := Elt(o, [1,2,3,4,5,8]);
[1, 2, 3, 4, 5, 8]
kash> L := OrderKextModularPower(pI, mu);
[ 2, 1 ]
kash> EltIsInIdeal(mu - L[1]^7, pI^L[2]);
> true


<- back[back] [prev] [next] [index] [root]