[back] [prev] [next] [index] [root]

 


OrderIsSubfield

Tests Quo( o|1)\subseteq Quo( o|2).

Syntax:

OrderIsSubfield(o1, o2);

order
  o1  
order
  o2  

Description:

This function checks whether Quo( o|1)\subseteq Quo( o|2) and returns true or false. If true is returned, a homomorphism between o|1 and o|2 is saved (globally) for further usage in, say, moving elements from o|1 and o|2.


Example:

Check a certain subfield.

kash> o1 := Order (Z,2,3);
Generating polynomial: x^2 - 3

kash> o2 := Order (o1, 2, 2);
      F[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 2
E 1[ 1]     x^2 - 3

kash> M := EltRepMat (Elt (o2,[[0,1], 1]),Z)[2];
[0 3 2 0]
[1 0 0 2]
[1 0 0 3]
[0 1 1 0]
kash> o3 := Order (MatMinPoly (M));
Generating polynomial: x^4 - 10*x^2 + 1

kash> EltMove (Elt (o1,[0,1]), o3);
[0, -11, 0, 1] / 2
kash> OrderIsSubfield (o1, o3);
> true


<- back[back] [prev] [next] [index] [root]