[back] [prev] [next] [index] [root]
MatHermiteRowMod
Computes the modular row Hermite normal form
of an integer matrix.
Syntax:
H := MatHermiteRowMod(k, M);
matrix |
H |
|
integer |
k |
|
matrix |
M |
|
Description:
Let M \in {\Bbb Z}^{m \times n}. The MatHermiteRowMod
routine computes the row Hermite normal form of the matrix
\left(\begin{array}{c} M k
cdot I_n \end{array}right) \in {\Bbb Z}^{(m+n)\times n}
and returns the upper m rows of the Hermite Normal form.
Example:
Compute the row Hermite normal form of
\left(\begin{array}{ccc}3 & 7 & 10 20 & 25 & 40
\end{array}right)
with respect to the modulus 5.
kash> M := Mat(Z,[[3,7,10],[20,25,40]]);
[ 3 7 10]
[20 25 40]
kash> MatHermiteRowMod(5,M);
> [1 4 0]
[0 5 0]
[0 0 5]
<- back[back] [prev] [next] [index] [root]