[back] [prev] [next] [index] [root]

 


IdemLift

Lifts an idempotent.

Syntax:

alpha:=IdemLift(a, p, k);

algebraic element
  alpha  
algebraic element
  a  
integer
  p  
integer
  k  

Description:

a is an idempotent for a prime ideal \p over p. This function calculates the idempotent \alpha corresponding to the ideal \p^{2^{ k}}.


Example:


kash> O:=OrderMaximal(Order(Poly(Zx,[1,0,-4,0,1])));
Generating polynomial: x^4 - 4*x^2 + 1
Discriminant: 2304 

kash> L:=Factor(5*O);
[ [ <5, [1, 1, 1, 0]>, 1 ], [ <5, [1, 4, 1, 0]>, 1 ] ]
kash> L1:=IdealIdempotents([L[1][1],L[2][1]]);
[ [-2, 0, 0, 2], [3, 0, 0, -2] ]
kash> IdemLift(L1[1],5,3);
> [-195312, 112715, 0, -22543]


<- back[back] [prev] [next] [index] [root]