[back] [prev] [next] [index] [root]
IdealIdempotents
Returns elements of the comaximal ideals which sum to 1.
Syntax:
E := IdealIdempotents(L)
list |
L |
of integral ideals over the same order |
false or list |
E |
of algebraic elements over the same order |
Description:
Let L be the list of ideals [ I|1, … ,I|n ].
This function tries to find algebraic elements a|i in I|i such that:
\sum a|i = 1.
The function will return false
if this in not possible
(iff I|1, … ,I|n are NOT comaximal).
Otherwise it returns the list [ a|1, … ,a|n ]
of elements which sum to one.
Each entry of E is an
element of the ideal in L with the same index.
Fractional ideals are allowed and considered as the biggest integral
ideal which contains the fractional ideal, i.e. disregarding the
denominator.
Example:
kash> O := OrderMaximal(Order(Z,2,- 45));;
kash> L := List( Factor(210*O), x->x[1]);
[ <2, [1, 3]>, <3, [1, 2]>, <3, [7, 7]>, <5, [0, 3]>, <7, [2, 3]>,
<7, [5, 3]> ]
kash> E := IdealIdempotents([L[2]*L[6]*L[3],L[2]*L[4],L[1]*L[4]*L[6]]);
> [ 966, -1035, 70 ]
<- back[back] [prev] [next] [index] [root]