[back] [prev] [next] [index] [root]

 


IdealIdempotents

Returns elements of the comaximal ideals which sum to 1.

Syntax:

E := IdealIdempotents(L)

list
  L  
of integral ideals over the same order
false or list
  E  
of algebraic elements over the same order

Description:

Let L be the list of ideals [ I|1, … ,I|n ]. This function tries to find algebraic elements a|i in I|i such that: \sum a|i = 1. The function will return false if this in not possible (iff I|1, … ,I|n are NOT comaximal). Otherwise it returns the list [ a|1, … ,a|n ] of elements which sum to one. Each entry of E is an element of the ideal in L with the same index. Fractional ideals are allowed and considered as the biggest integral ideal which contains the fractional ideal, i.e. disregarding the denominator.


Example:


kash> O := OrderMaximal(Order(Z,2,- 45));;
kash> L := List( Factor(210*O), x->x[1]);
[ <2, [1, 3]>, <3, [1, 2]>, <3, [7, 7]>, <5, [0, 3]>, <7, [2, 3]>, 
  <7, [5, 3]> ]
kash> E := IdealIdempotents([L[2]*L[6]*L[3],L[2]*L[4],L[1]*L[4]*L[6]]);
> [ 966, -1035, 70 ]


<- back[back] [prev] [next] [index] [root]