[back] [prev] [next] [index] [root]
sg := FindMaximalCentralField(o | I [, inf][, aut]); sg := FindMaximalCentralField(G [, aut]);
Matrix | sg |
describing the aditional relations |
order | o |
|
integral ideal | I |
|
list | inf |
of infinite places |
AbelianGroup | G |
must be from RayClassGroupToAbelianGroup |
list | aut |
of automorphisms of o, if omitted OrderAutomorphisms(o, []) is used. |
kash> o := OrderMaximal(Z, 2, 10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> OrderAutomorphisms(o); [ [0, 1], [0, -1] ] kash> G := RayClassGroupToAbelianGroup(6*o, [1, 2]); RayClassGroupToAbelianGroup(<6>, [ 1, 2 ]) Group with relations: [2 0 0] [0 4 0] [0 0 2] kash> rcg := FindMaximalCentralField(G); [2 0 0] [0 2 0] [0 0 2] [0 0 0] [0 0 0] [0 0 0]
kash> cf1 := RayClassField(6*o, [1, 2], rcg); [ x^2 - 6, x^2 - 2, x^2 + 2 ] kash> cf2 := RayClassField(6*o, [1, 2]); [ x^2 - 6, x^2 + 2, x^4 + [8, -4]*x^2 + [28, -8] ]
kash> O1 := RayClassFieldAuto(cf1); [ F[1] / / E1[1] / / Q F [ 1] x^8 - 24*x^6 + 248*x^4 + 288*x^2 + 2704 E 1[ 1] x^2 - 10 Discriminant: <17352869066524232277088370178392064> , [ a, a*b, a*b*c, a*b*c*d, a*b*d, a*c, a*c*d, a*d, b, b*c, b*c*d, b*d, c, c*d, d, e ] ]
kash> a := O1[2][Position(O1[2], "a")]; a kash> b := O1[2][Position(O1[2], "b")];; kash> c := O1[2][Position(O1[2], "c")];; kash> d := O1[2][Position(O1[2], "d")];; kash> a*b = b*a; a*c = c*a; a*d = d*a; true true true kash> b*c = c*b; b*d = d*b; c*d = d*c;true true > true
<- back[back] [prev] [next] [index] [root]