[back] [prev] [next] [index] [root]

 


EltRepMat

A representation matrix of an algebraic element over o together with a suitable denominator.

Syntax:

L := EltRepMat(a[,o]);

list
  L  
algebraic element
  a  
order
  o  
must be a direct suborder of EltOrder (a)

Description:

Given an algebraic element a in an order O and another order o, such that o is a direct suborder of O, this function computes a list consisting of an integer den and a matrix M, such that 1/den cdot M is a representation matrix of a with coefficients in o.


Example:

The representation matrix of certain algebraic elements.

kash> o := Order (Poly(Zx,[1,0,73,-280,-2399]));
Generating polynomial: x^4 + 73*x^2 - 280*x - 2399

kash> O1 := Order (o,2,2);
      F[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 2
E 1[ 1]     x^4 + 73*x^2 - 280*x - 2399

kash> O2 := Order (O1, 2, 3);
         F[1]
           /
          /
      E2[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 3
E 2[ 1]     x^2 - 2
E 1[ 1]     x^4 + 73*x^2 - 280*x - 2399

kash> alpha := Elt (O2,[[[1,2,3,4],1],[2,[7,8,9,0]]]/ 34);
[[[1, 2, 3, 4], 1], [2, [7, 8, 9, 0]]] / 34
kash> EltRepMat (alpha,o);
> [ 34, [[1, 2, 3, 4] 2 6 [42, 48, 54, 0]]
    [1 [1, 2, 3, 4] [21, 24, 27, 0] 6]
    [2 [14, 16, 18, 0] [1, 2, 3, 4] 2]
    [[7, 8, 9, 0] 2 1 [1, 2, 3, 4]] ]


<- back[back] [prev] [next] [index] [root]