[back] [prev] [next] [index] [root]
EltMinkowski
Returns the image of an algebraic element under the Minkowski map.
Syntax:
v := EltMinkowski(a);
real matrix |
v |
|
algebraic element |
a |
|
Description:
Let F = Q(O) be the field of fractions of the order O,
which contains the algebraic element a and let
\sigma|1, … ,\sigma|n be
the Galois isomorphisms of F, where \sigma|1, … ,\sigma|{r|1}
are precisely the real isomorphisms and overline{\sigma|{j+r|2}} =
\sigma|{j} for r|1 < j <= r|1+r|2 are the complex ones. Then
the image of a under the
Minkoswski map \psi : O \mapsto {R}^{r|1+2r|2} is defined as
\begin{eqnarray*}
& [\sigma|1(a), … ,\sigma|{r|1}(a),
\sqrt2Re(\sigma|{r|1 + 1}(a)),
quad … ,\sqrt2Re(\sigma|{r|1+r|2}(a)),
& \sqrt2\Im (\sigma|{r|1 + 1}(a)),quad … ,
\sqrt2\Im (\sigma|{r|1+r|2}(a))].&
\end{eqnarray*}
Example:
Matrix of logarithms of archimedean valuations
of an algebraic element.
kash> O := Order (Z,2,-1);
Generating polynomial: x^2 + 1
kash> rho := Elt (O,[0,1]);
[0, 1]
kash> EltMinkowski (rho);
[ 0, 1.414213562373095048801688724209698078569671875377]
kash> O := Order (Poly(Zx,[1,0,73,-280,-2399]));
Generating polynomial: x^4 + 73*x^2 - 280*x - 2399
kash> rho := Elt (O,[1,1,0,1]);
[1, 1, 0, 1]
kash> EltMinkowski (rho);
> [ 234.532336541434390915922266933690607679916764155403, -60.735882043911047217\
34054416286226981382540207225, 473.9054718000681082230949125242621731996360759\
3719, -1354.559212605075329197656456425992015910014499693796]
<- back[back] [prev] [next] [index] [root]