[back] [prev] [next] [index] [root]

 


EltMinkowski

Returns the image of an algebraic element under the Minkowski map.

Syntax:

v := EltMinkowski(a);

real matrix
  v  
algebraic element
  a  

Description:

Let F = Q(O) be the field of fractions of the order O, which contains the algebraic element a and let \sigma|1, … ,\sigma|n be the Galois isomorphisms of F, where \sigma|1, … ,\sigma|{r|1} are precisely the real isomorphisms and overline{\sigma|{j+r|2}} = \sigma|{j} for r|1 < j <= r|1+r|2 are the complex ones. Then the image of a under the Minkoswski map \psi : O \mapsto {R}^{r|1+2r|2} is defined as \begin{eqnarray*} & [\sigma|1(a), … ,\sigma|{r|1}(a), \sqrt2Re(\sigma|{r|1 + 1}(a)), quad … ,\sqrt2Re(\sigma|{r|1+r|2}(a)), & \sqrt2\Im (\sigma|{r|1 + 1}(a)),quad … , \sqrt2\Im (\sigma|{r|1+r|2}(a))].& \end{eqnarray*}


Example:

Matrix of logarithms of archimedean valuations of an algebraic element.

kash> O := Order (Z,2,-1);
Generating polynomial: x^2 + 1

kash> rho := Elt (O,[0,1]);
[0, 1]
kash> EltMinkowski (rho);
[ 0, 1.414213562373095048801688724209698078569671875377]
kash> O := Order (Poly(Zx,[1,0,73,-280,-2399]));
Generating polynomial: x^4 + 73*x^2 - 280*x - 2399

kash> rho := Elt (O,[1,1,0,1]);
[1, 1, 0, 1]
kash> EltMinkowski (rho);
> [ 234.532336541434390915922266933690607679916764155403, -60.735882043911047217\
34054416286226981382540207225, 473.9054718000681082230949125242621731996360759\
3719, -1354.559212605075329197656456425992015910014499693796]


<- back[back] [prev] [next] [index] [root]