[back] [prev] [next] [index] [root]
p := EltMinPoly (a [, PA]); p := EltMinPoly (a [, O]);
polynomial | p |
|
polynomial algebra | PA |
|
suborder | O |
|
algebraic element | a |
kash> E1 := Order (Z,2,10); Generating polynomial: x^2 - 10 kash> E2 := Order (E1, 2, 5); F[1] / / E1[1] / / Q F [ 1] x^2 - 5 E 1[ 1] x^2 - 10 kash> F := Order (E2, 2, 3); F[1] / / E2[1] / / E1[1] / / Q F [ 1] x^2 - 3 E 2[ 1] x^2 - 5 E 1[ 1] x^2 - 10 kash> E1x := PolyAlg (E1); Univariate Polynomial Ring in x over Generating polynomial: x^2 - 10 kash> Fx := PolyAlg (F); Univariate Polynomial Ring in x over F[1] / / E2[1] / / E1[1] / / Q F [ 1] x^2 - 3 E 2[ 1] x^2 - 5 E 1[ 1] x^2 - 10 kash> a := Elt (F, [[[1,2],[3,4]],[[3/5, 5],[7,9]]]); [[[5, 10], [15, 20]], [[3, 25], [35, 45]]] / 5 kash> g := EltMinPoly (a, E1x); x^4 + [-4, -8]*x^3 + [-717904, -100800] / 25*x^2 + [-3443792, -2723584] / 25*x\ + [99481555504, 24875390400] / 625 kash> f := PolyMove (g, Fx); x^4 + [[[-4, -8], 0], 0]*x^3 + [[[-717904, -100800], 0], 0] / 25*x^2 + [[[-344\ 3792, -2723584], 0], 0] / 25*x + [[[99481555504, 24875390400], 0], 0] / 625 kash> Eval (f, a); > 0
<- back[back] [prev] [next] [index] [root]