[back] [prev] [next] [index] [root]
p := EltCharPoly (a [, PA]); p := EltCharPoly (a [, O]);
| polynomial | p |
|
| polynomial algebra | PA |
|
| suborder | O |
|
| algebraic element | a |
kash> E1 := Order (Z,2,10);
Generating polynomial: x^2 - 10
kash> E2 := Order (E1, 2, 5);
F[1]
/
/
E1[1]
/
/
Q
F [ 1] x^2 - 5
E 1[ 1] x^2 - 10
kash> F := Order (E2, 2, 3);
F[1]
/
/
E2[1]
/
/
E1[1]
/
/
Q
F [ 1] x^2 - 3
E 2[ 1] x^2 - 5
E 1[ 1] x^2 - 10
kash> E1x := PolyAlg (E1);
Univariate Polynomial Ring in x over Generating polynomial: x^2 - 10
kash> Fx := PolyAlg (F);
Univariate Polynomial Ring in x over F[1]
/
/
E2[1]
/
/
E1[1]
/
/
Q
F [ 1] x^2 - 3
E 2[ 1] x^2 - 5
E 1[ 1] x^2 - 10
kash> a := Elt (F, [[[1,2],[3,4]],[[3/5, 5],[7,9]]]);
[[[5, 10], [15, 20]], [[3, 25], [35, 45]]] / 5
kash> g := EltCharPoly (a, E1x);
x^4 + [-4, -8]*x^3 + [-717904, -100800] / 25*x^2 + [-3443792, -2723584] / 25*x\
+ [99481555504, 24875390400] / 625
kash> f := PolyMove (g, Fx);
x^4 + [[[-4, -8], 0], 0]*x^3 + [[[-717904, -100800], 0], 0] / 25*x^2 + [[[-344\
3792, -2723584], 0], 0] / 25*x + [[[99481555504, 24875390400], 0], 0] / 625
kash> Eval (f, a);
> 0
<- back[back] [prev] [next] [index] [root]