[back] [prev] [next] [index] [root]

 


EltCharPoly

Characteristic polynomial of an algebraic element over a subfield.

Syntax:

p := EltCharPoly (a [, PA]);
p := EltCharPoly (a [, O]);

polynomial
  p  
polynomial algebra
  PA  
suborder
  O  
algebraic element
  a  

Description:

Given an algebraic element a in an Order O and a polynomial algebra PA over another order o or this order, this function computes the characteristic polynomial of a over o i.e. the returned polynomial is contained in PA.


Example:

Characteristic polynomials of elements in {\Bbb Q}(\sqrt{10},\sqrt{5}, \sqrt{3}).

kash> E1 := Order (Z,2,10);
Generating polynomial: x^2 - 10

kash> E2 := Order (E1, 2, 5);
      F[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 5
E 1[ 1]     x^2 - 10

kash> F := Order (E2, 2, 3);
         F[1]
           /
          /
      E2[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 3
E 2[ 1]     x^2 - 5
E 1[ 1]     x^2 - 10

kash> E1x := PolyAlg (E1);
Univariate Polynomial Ring in x over Generating polynomial: x^2 - 10

kash> Fx := PolyAlg (F);
Univariate Polynomial Ring in x over          F[1]
           /
          /
      E2[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 3
E 2[ 1]     x^2 - 5
E 1[ 1]     x^2 - 10

kash> a := Elt (F, [[[1,2],[3,4]],[[3/5, 5],[7,9]]]);
[[[5, 10], [15, 20]], [[3, 25], [35, 45]]] / 5
kash> g := EltCharPoly (a, E1x);
x^4 + [-4, -8]*x^3 + [-717904, -100800] / 25*x^2 + [-3443792, -2723584] / 25*x\
 + [99481555504, 24875390400] / 625
kash> f := PolyMove (g, Fx);
x^4 + [[[-4, -8], 0], 0]*x^3 + [[[-717904, -100800], 0], 0] / 25*x^2 + [[[-344\
3792, -2723584], 0], 0] / 25*x + [[[99481555504, 24875390400], 0], 0] / 625
kash> Eval (f, a);
> 0


<- back[back] [prev] [next] [index] [root]