[back] [prev] [next] [index] [root]
EltAbsLogHeight
Computes the absolute logarithmic height of an algebraic number.
Syntax:
h := EltAbsLogHeight(a);
| real |
h |
|
| algebraic element |
a |
|
Description:
Let \alpha be an algebraic number. Denote by
m_\alpha(t) = a_0 t^n + cdots + a_n
= a_0 \prod_{j=1}^n (t-\alpha^{(j)})
its minimal polynomial over Z. The absolute
logarithmic height of \alpha is defined by
h(\alpha)
= frac{1}{n} \log \left(
a_0 \prod_{j=1}^n \max(1,|\alpha^{(j)}|) right).
Example:
kash> o := Order(Z,4,7);
Generating polynomial: x^4 - 7
kash> a := Elt(o,[1,1,1,1]);
[1, 1, 1, 1]
kash> EltAbsLogHeight(a);
1.343819601921041250609358018785526704542243019136
kash> EltAbsLogHeight(a/100);
> 4.085309800568132385973058818275095989145577876487
<- back[back] [prev] [next] [index] [root]