[back] [prev] [next] [index] [root]

 


EltAbsLogHeight

Computes the absolute logarithmic height of an algebraic number.

Syntax:

h := EltAbsLogHeight(a);

real
  h  
algebraic element
  a  

Description:

Let \alpha be an algebraic number. Denote by m_\alpha(t) = a_0 t^n + cdots + a_n = a_0 \prod_{j=1}^n (t-\alpha^{(j)}) its minimal polynomial over Z. The absolute logarithmic height of \alpha is defined by h(\alpha) = frac{1}{n} \log \left( a_0 \prod_{j=1}^n \max(1,|\alpha^{(j)}|) right).


Example:


kash> o := Order(Z,4,7);
Generating polynomial: x^4 - 7

kash> a := Elt(o,[1,1,1,1]);
[1, 1, 1, 1]
kash> EltAbsLogHeight(a);
1.343819601921041250609358018785526704542243019136
kash> EltAbsLogHeight(a/100);
> 4.085309800568132385973058818275095989145577876487


<- back[back] [prev] [next] [index] [root]