[back] [prev] [next] [index] [root]
Elt
Creates an algebraic number.
Syntax:
a := Elt(O,L);
a := Elt(O,L/d);
a := Elt(O,h/d);
a := Elt(O,h);
algebraic element |
a |
|
order |
O |
|
list |
L |
of coefficients |
integer |
h |
|
integer |
d |
|
Description:
Let o be an order with coefficient order c. Denote by
Quo(o) and Quo(c) the quotient field of o,
respectively c. Let omega_1, … ,omega_n be the
Quo(c) basis of Quo(o) which belongs to the order
o. Each algebraic number a in o is of a form
a = a_1 omega_1 + cdots + a_n omega_n
with coefficients a_1, … ,a_n \in Quo(c).\smallskip
To create a in KASH the coefficients of a must be
passed to the Elt function as a list L of length
n. The entries of L correspond to the coefficients
a_i of a. Each entry l of L is either an
algebraic number in c or it has to be a valid argument
for the function call Elt(c,l). In the special case
that c equals Z the Elt function requires that
the entries of L are rational integers. \bigskip
Elt(o,L)
creates the element a = a_1omega_1 + cdots + a_nomega_n.
\medskip
Elt(O,L/d)
creates the element a = frac{a_1}{d}omega_1 +
cdots + frac{a_n}{d}omega_n. \medskip
Elt(O,h)
creates the algebraic number which corresponds to the
rational integer h. \medskip
Elt(O,h/d)
creates the algebraic number which corresponds to the
rational frac{h}{d}.
Example:
Create some algebraic elements:
kash> o1 := Order (Poly(Zx,[1,0,73,-280,-2399]));;
kash> u := Elt (o1,[1,2,3,4]/2);
[1, 2, 3, 4] / 2
kash> v := Elt (o1,2);
2
kash> u*v;
[1, 2, 3, 4]
kash> o2 := Order (o1,2,2);;
kash> o3 := Order (o2,2,3);
F[1]
/
/
E2[1]
/
/
E1[1]
/
/
Q
F [ 1] x^2 - 3
E 2[ 1] x^2 - 2
E 1[ 1] x^4 + 73*x^2 - 280*x - 2399
kash> a := Elt (o3,[1,2]);
[1, 2]
kash> b := Elt (o3,[[[1,1,1,1],1/2],2]);
[[[2, 2, 2, 2], 1], 4] / 2
kash> c := Elt (o3,[[[1,1,1,1],1/2],[1/3,[4,5,6,8]/4]]);
[[[12, 12, 12, 12], 6], [4, [12, 15, 18, 24]]] / 12
kash> d := Elt (o3,1/2);
> 1 / 2
<- back[back] [prev] [next] [index] [root]