[back] [prev] [next] [index] [root]
Den
Returns the denominator of an object.
Syntax:
d := Den( a );
d := Den(a, "rep");
d := Den( q );
I := Den( I );
integer |
d |
|
quotient field element or polynomial |
d |
|
rational |
q |
|
algebraic element |
a |
|
algebraic function field order element |
a |
|
quotient field element or polynomial |
q |
|
ideal |
I |
|
Description:
For a rational number or a rational function the function
returns the denominator of the rational argument.
The denominator of the algebraic number a is the smallest
natural number d such that dcdot a is an algebraic
integer. If you use Den(a, "rep") the
denominator in the representation of a is returned.
For an algebraic function field order element
see AlffEltDen.
The denominator of a fractional ideal \a is the smallest
positive integer d that dcdot \a is an integral ideal.
Example:
An absolute example for an algebraic element:
kash> o := Order (x^3 - 23*x^2 + 146*x - 244);;
kash> a := Elt (o, [1/2,3/5,45/5657567]);
[28287835, 33945402, 450] / 56575670
kash> Den ( a );
56575670
kash> Den ( a, "rep" );
> 56575670
<- back[back] [prev] [next] [index] [root]