[back] [prev] [next] [index] [root]
b := AlffOrderIsFinite(o);
boolean | b |
|
alff order | P |
kash> k := FF(3); Finite field of size 3 kash> AlffInit(k); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> f := y^3-(T+1)*y^2+2*y*T-T^5; y^3 + (2*T + 2)*y^2 + 2*T*y + 2*T^5 kash> F:=Alff(f); Algebraic function field defined by .1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5 over Univariate rational function field over GF(3) Variables: T kash> AlffOrders(f); "Defining global variables: F, o, oi, one" kash> oe := AlffOrderEqFinite(F); Finite equation order of Algebraic function field defined by .1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5 over Univariate rational function field over GF(3) Variables: T kash> oie:=AlffOrderEqInfty(F); Infinite maximal order of Algebraic function field defined by .1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5 over Univariate rational function field over GF(3) Variables: T kash> AlffOrderIsFinite(o); true kash> AlffOrderIsFinite(oi); false kash> AlffOrderIsFinite(oe); true kash> AlffOrderIsFinite(oie); > false
<- back[back] [prev] [next] [index] [root]