[back] [prev] [next] [index] [root]

 


AlffOrderIsFinite

Returns whether a function field order is finite.

Syntax:

b := AlffOrderIsFinite(o);

boolean
  b  
alff order
  P  

Description:

no detailed description available yet


Example:


kash> k := FF(3);
Finite field of size 3
kash> AlffInit(k);
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> f := y^3-(T+1)*y^2+2*y*T-T^5;
y^3 + (2*T + 2)*y^2 + 2*T*y + 2*T^5
kash> F:=Alff(f);
Algebraic function field defined by
.1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5
over
Univariate rational function field over GF(3)
Variables: T

kash> AlffOrders(f);
"Defining global variables: F, o, oi, one"
kash> oe := AlffOrderEqFinite(F);
Finite equation order of 
Algebraic function field defined by
.1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5
over
Univariate rational function field over GF(3)
Variables: T

kash> oie:=AlffOrderEqInfty(F);
Infinite maximal order of 
Algebraic function field defined by
.1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5
over
Univariate rational function field over GF(3)
Variables: T

kash> AlffOrderIsFinite(o);
true
kash> AlffOrderIsFinite(oi);
false
kash> AlffOrderIsFinite(oe);
true
kash> AlffOrderIsFinite(oie);
> false


<- back[back] [prev] [next] [index] [root]