[back] [prev] [next] [index] [root]
b := AlffIsAbs(F);
boolean | b |
|
function field | F |
kash> k := FF(3); Finite field of size 3 kash> AlffInit(k); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> f := y^3-y^2*(T+1)+2*y*T-T^5; y^3 + (2*T + 2)*y^2 + 2*T*y + 2*T^5 kash> F:=Alff(f); Algebraic function field defined by .1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5 over Univariate rational function field over GF(3) Variables: T kash> AlffIsAbs(F); true kash> AlffOrders(f); "Defining global variables: F, o, oi, one" kash> a1:=AlffElt(o,[1,3,T]); [ 1, 0, T ] kash> a2:=AlffElt(o,[T,T^2,0]); [ T, T^2, 0 ] kash> a3:=AlffElt(o,[1,3,0]); [ 1, 0, 0 ] kash> L:=[a3,a2,a1]; [ [ 1, 0, 0 ], [ T, T^2, 0 ], [ 1, 0, T ] ] kash> A:=PolyAlg(o); Univariate Polynomial Ring in x over Finite maximal order of Algebraic function field defined by .1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5 over Univariate rational function field over GF(3) Variables: T given by transformation matrix [T 0 0] [0 T 2] [0 0 1] with denominator T kash> g:=Poly(A,L); x^2 + [ T, T^2, 0 ]*x + [ 1, 0, T ] kash> G:=Alff(g); Algebraic function field defined by .1^2 + .1*.2*.3^2 + .1*.3 + .2^2 + 2*.2 + 1 over Algebraic function field defined by .1^3 + 2*.1^2*.2 + 2*.1^2 + 2*.1*.2 + 2*.2^5 over Univariate rational function field over GF(3) Variables: T kash> AlffIsAbs(G); > false
<- back[back] [prev] [next] [index] [root]