[back] [prev] [next] [index] [root]
AlffEltBstar
Computes B^*(a) for a global function field element a.
Syntax:
q := AlffEltBstar(a);
rational |
q |
|
global function field element |
a |
|
Description:
Let v_i denote the s distinct normalized valuations at the
s places of F over the infinite place of k(T), with
ramification indices e_i.
Let e = lcm { e_1, \dots, e_s } and define
B^*:F\longrightarrow {a/e | a\inZ}cup{-\infty} :
\alpha\longmapsto -\min_{i=1}^s v_i(\alpha)/e_i.
This function computes B^* for elements of a global
function field F. See Scho1 for further information.
Example:
kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> a := AlffElt(o, [0, 1, 1]);
[ 0, 1, 1 ]
kash> AlffEltBstar(a);
> 8/3
<- back[back] [prev] [next] [index] [root]