[back] [prev] [next] [index] [root]

 


AlffEltBstar

Computes B^*(a) for a global function field element a.

Syntax:

q := AlffEltBstar(a);

rational
  q  
global function field element
  a  

Description:

Let v_i denote the s distinct normalized valuations at the s places of F over the infinite place of k(T), with ramification indices e_i. Let e = lcm { e_1, \dots, e_s } and define B^*:F\longrightarrow {a/e | a\inZ}cup{-\infty} : \alpha\longmapsto -\min_{i=1}^s v_i(\alpha)/e_i. This function computes B^* for elements of a global function field F. See Scho1 for further information.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> a := AlffElt(o, [0, 1, 1]);
[ 0, 1, 1 ]
kash> AlffEltBstar(a);
> 8/3


<- back[back] [prev] [next] [index] [root]