[back] [prev] [next] [index] [root]

 


AbelianSubGroup

Creates a subgroup.

Syntax:

s := AbelianSubGroup([g,] L [, generators]);
s := AbelianSubGroup(g, mat [, generators]);

groups
  g, s  
list
  L  
list of elements of g or list of exponent vectors
matrix
  mat  
boolean
  generators  

Description:

Creates a subgroup s of the group g. The subgroup s is generated by the elements of the list L. If you use s := AbelianSubGroup(g, mat); then the subgroup s is generated by the elements represented by the rows of mat. If the last (optional) parameter generators is true then the new generators are computed, too.


Example:


kash> g := AbelianGroupCreate([[0,1,2],[5,6,0],[0,4,5]]);;



Example:

Create subgroup with list of exponent vectors:

kash> s := AbelianSubGroup(g, [[0,1,0], [0,0,5]]);
Group with relations:
[1 1]
[0 3]



Example:

Create subgroup with list of group elements:

kash> elt1 := AbelianGroupEltCreate(g, [0,1,0]);;
kash> elt2 := AbelianGroupEltCreate(g, [0,0,5]);;
kash> s := AbelianSubGroup([elt1, elt2]);
Group with relations:
[1 1]
[0 3]



Example:

Create subgroup with matrix:

kash> mat := Mat(Z, [[0,1,0], [0,0,5]]);;
kash> s := AbelianSubGroup(g, mat);
> Group with relations:
[1 1]
[0 3]


<- back[back] [prev] [next] [index] [root]