[back] [prev] [next] [index] [root]
s := AbelianSubGroup([g,] L [, generators]); s := AbelianSubGroup(g, mat [, generators]);
groups | g, s |
|
list | L |
list of elements of g or list of exponent vectors |
matrix | mat |
|
boolean | generators |
kash> g := AbelianGroupCreate([[0,1,2],[5,6,0],[0,4,5]]);;
kash> s := AbelianSubGroup(g, [[0,1,0], [0,0,5]]); Group with relations: [1 1] [0 3]
kash> elt1 := AbelianGroupEltCreate(g, [0,1,0]);; kash> elt2 := AbelianGroupEltCreate(g, [0,0,5]);; kash> s := AbelianSubGroup([elt1, elt2]); Group with relations: [1 1] [0 3]
kash> mat := Mat(Z, [[0,1,0], [0,0,5]]);; kash> s := AbelianSubGroup(g, mat); > Group with relations: [1 1] [0 3]
<- back[back] [prev] [next] [index] [root]