[back] [prev] [next] [index] [root]

 


AbelianRayClassGroupAutoCreate

Given a field automorphism, this function generates the corresponding automorphism of abelian groups.

Syntax:

aut := AbelianRayClassGroupAutoCreate(G, sigma);

AbelianGroupHom
  aut  
AbelianGroup
  G  
must be RayClassGroupToAbelianGroup
KASH function
  sigma  
acting on ideals

Description:

no detailed description available yet


Example:

We demonstrate this in Q(\sqrt{10}):

kash> o := OrderMaximal(Z, 2, 10);
Generating polynomial: x^2 - 10
Discriminant: 40 

kash> G := RayClassGroupToAbelianGroup(27*o);
RayClassGroupToAbelianGroup(<27>, [  ])
Group with relations:
[18]
kash> OrderAutomorphisms(o);
[ [0, 1], [0, -1] ]
kash> aut := AbelianRayClassGroupAutoCreate(G, x->IdealAutomorphism(x, 2));
HomMatrix =
[1] 
from RayClassGroupToAbelianGroup(<27>, [  ])
Group with relations:
[18] 
to RayClassGroupToAbelianGroup(<27>, [  ])
Group with relations:
[18]



Example:

This should be equivalent to (but is faster for larger groups):

kash> l := AbelianGroupGenerators(G);
[ [1] ]
kash> Apply(l, AbelianGroupDiscreteExp);
kash> Apply(l, x->IdealAutomorphism(x, 2));
kash> Apply(l, x->AbelianGroupDiscreteLog(G, x));
kash> Apply(l, x->x.expvec);
kash> IsMat(l);
true
kash> aut2 := AbelianGroupHomCreate(G, G, l);
> HomMatrix =
[1] 
from RayClassGroupToAbelianGroup(<27>, [  ])
Group with relations:
[18] 
to RayClassGroupToAbelianGroup(<27>, [  ])
Group with relations:
[18]



<- back[back] [prev] [next] [index] [root]