[back] [prev] [next] [index] [root]
aut := AbelianRayClassGroupAutoCreate(G, sigma);
AbelianGroupHom | aut |
|
AbelianGroup | G |
must be RayClassGroupToAbelianGroup |
KASH function | sigma |
acting on ideals |
kash> o := OrderMaximal(Z, 2, 10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> G := RayClassGroupToAbelianGroup(27*o); RayClassGroupToAbelianGroup(<27>, [ ]) Group with relations: [18] kash> OrderAutomorphisms(o); [ [0, 1], [0, -1] ] kash> aut := AbelianRayClassGroupAutoCreate(G, x->IdealAutomorphism(x, 2)); HomMatrix = [1] from RayClassGroupToAbelianGroup(<27>, [ ]) Group with relations: [18] to RayClassGroupToAbelianGroup(<27>, [ ]) Group with relations: [18]
kash> l := AbelianGroupGenerators(G); [ [1] ] kash> Apply(l, AbelianGroupDiscreteExp); kash> Apply(l, x->IdealAutomorphism(x, 2)); kash> Apply(l, x->AbelianGroupDiscreteLog(G, x)); kash> Apply(l, x->x.expvec); kash> IsMat(l); true kash> aut2 := AbelianGroupHomCreate(G, G, l); > HomMatrix = [1] from RayClassGroupToAbelianGroup(<27>, [ ]) Group with relations: [18] to RayClassGroupToAbelianGroup(<27>, [ ]) Group with relations: [18]
<- back[back] [prev] [next] [index] [root]