[back] [prev] [next] [index] [root]
L := AbelianGroupIsAut(hom [, check]);
homomorphism | hom |
|
boolean | check |
|
list | L |
kash> g := AbelianGroupCreate(Mat(Z, [[2,2], [1,3]]));; kash> mat := Mat(Z, [[0,2],[0,2]]);; kash> hom := AbelianGroupHomCreate(g, g, mat, true);; kash> AbelianGroupIsAut(hom); [ false ]
kash> AbelianGroupPrintLevel := 1;; kash> AbelianGroupIsAut(hom); homomorphism is not surjective [ false ] kash> AbelianGroupPrintLevel := 0;;
kash> mat := Mat(Z, [[-1,2],[3,2]]);; kash> hom := AbelianGroupHomCreate(g, g, mat, true);; kash> hominv := hom^-1; > HomMatrix = [ 0 1/5] [ 0 1/5] from Group with relations: [2 2] [1 3] to Group with relations: [2 2] [1 3]
<- back[back] [prev] [next] [index] [root]