[back] [prev] [next] [index] [root]

 


AbelianFixPointGroup

Computes the fix point group of endomorphisms.

Syntax:

f := AbelianFixPointGroup(hom);
f := AbelianFixPointGroup(L);

group
  f  
homomorphism
  hom  
list
  L  
list of homomorphisms

Description:

Computes the group consisting of elements that are (pointwise) fix under each given endomorphism.


Example:

Compute the fix point group and apply an endomorphism:

kash> g := AbelianGroupCreate([[0,0],[0,60]]);;
kash> mat := Mat(Z, [[1,1], [0,1]]);;
kash> hom := AbelianGroupHomCreate(g, g, mat, true);
HomMatrix =
[1 1]
[0 1] 
from Group with relations:
[ 0  0]
[ 0 60] 
to Group with relations:
[ 0  0]
[ 0 60]

kash> f := AbelianFixPointGroup(hom);
Group with relations:
[60  0]
[ 0  0]
kash> elt := AbelianGroupEltCreate(f, [1,2]);
[1 2]
kash> elt := AbelianGroupEltMove(elt, g);
[120   1]
kash> hom*elt;
> [120   1]


<- back[back] [prev] [next] [index] [root]