[back] [prev] [next] [index] [root]
rc := AbelianFieldToRCF(o [, I]);
list | rc |
[ ideal, inf, relations ] |
order | o |
of an abelian field with known automorphisms |
ideal | I |
of the coef. ring of o. Must be a multiple of the conductor. |
kash> o := OrderMaximal(x^4-4*x^2+1); Generating polynomial: x^4 - 4*x^2 + 1 Discriminant: 2304 kash> OrderAutomorphisms(o); [ [0, 1, 0, 0], [0, -4, 0, 1], [0, 4, 0, -1], [0, -1, 0, 0] ] kash> rc1 := AbelianFieldToRCF(o, Disc(o)); Quotient of RayClassGroupToAbelianGroup(<2304>, [ ]) Group with relations: [ 2 0] [ 0 2] [ 2 0] [ 0 192] kash> f := RayConductor(rc1); [ <24>, [ ] ] kash> rc2 := AbelianFieldToRCF(o, f[1]); Quotient of RayClassGroupToAbelianGroup(<24>, [ ]) Group with relations: [2 0] [0 2] [2 0] [0 2] kash> rcf := RayClassField(rc2); > [ x^2 - 2, x^2 - 3 ]
<- back[back] [prev] [next] [index] [root]