ON THE COMPUTATION OF THE COEFFICIENTS OF A MODULAR FORM

ANTS VII, BERLIN

BAS EDIXHOVEN, UNIVERSITEIT LEIDEN

Joint work with Jean-Marc Couveignes, Robin de Jong, Franz Merkl, and Johan Bosman.

Motivated by a question by René Schoof.

Detailed text available on arxiv.

Definition of Ramanujan's τ -function:

$$x \prod_{n \ge 1} (1 - x^n)^{24} = \sum_{n \ge 1} \tau(n) x^n$$
 in $\mathbb{Z}[[x]].$

Theorem 1 There exists a probabilistic algorithm that on input a prime number p gives $\tau(p)$, in expected running time polynomial in $\log p$.

Behind the theorem is the existence of certain Galois representations. The function Δ on the complex upper half plane \mathbb{H} given by:

$$\Delta \colon \mathbb{H} \to \mathbb{C}, \quad z \mapsto \sum_{n \ge 1} \tau(n) e^{2\pi i n z}$$

is a modular form, the so-called discriminant modular form. It is a new-form of level 1 and weight 12.

Deligne showed (1969) that, as conjectured by Serre, for each prime number l there is a (necessarily unique) semi-simple continuous representation:

$$\rho_l$$
: Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) \rightarrow Gal(K_l/\mathbb{Q}) \hookrightarrow Aut(V_l),

with V_l a two-dimensional \mathbb{F}_l -vector space, such that $\mathbb{Q} \to K_l$ is unramified at all primes $p \neq l$, and such that for all $p \neq l$ the characteristic polynomial of $\rho_l(\operatorname{Frob}_p)$ is given by:

$$\det(1 - x \operatorname{Frob}_p, V_l) = 1 - \tau(p)x + p^{11}x^2.$$

In particular, we have trace($\rho_l \operatorname{Frob}_p$) = $\tau(p) \mod l$ for all primes $p \neq l$.

Serre and Swinnerton-Dyer: for l not in $\{2, 3, 5, 7, 23, 691\}$ we have $im(\rho_l) \supset SL(V_l)$.

Theorem 2 There exists a probabilistic algorithm that computes ρ_l in time polynomial in *l*. It gives:

1. the extension $\mathbb{Q} \to K_l$, given as a \mathbb{Q} -basis e and the products $e_i e_j = \sum_k a_{i,j,k} e_k$;

2. a list of the elements σ of Gal(K_l/\mathbb{Q}), where each σ is given as its matrix with respect to e;

3. the injective morphism ρ_l : Gal $(K_l/\mathbb{Q}) \hookrightarrow GL_2(\mathbb{F}_l)$.

Theorem 2 implies Theorem 1 via "standard" algorithms.

Note: $|\tau(p)| < 2p^{11/2}$ by Deligne.

CONTEXT AND MOTIVATION

0. More congruences for $\tau(p)$ than the classical ones.

1. Relation to Schoof's algorithm for elliptic curves and Pila's generalisation to curves of fixed genus and abelian varieties of fixed dimension.

2. Computation of non-solvable global field extensions predicted by Langlands' program.

3. Computation of higher degree etale cohomology with \mathbb{F}_l -coefficients, with its Galois action.

4. Evidence towards existence of polynomial time computation of $\#X(\mathbb{F}_p)$ for *X* a fixed \mathbb{Z} -scheme of finite type.

Where to find V_l

Deligne's work shows that V_l occurs in:

$$H^{11}(E^{\underline{10}}_{\overline{\mathbb{Q}},\text{et}}, \mathbb{F}_l)^{\vee},$$
$$H^1(j\text{-line}_{\overline{\mathbb{Q}},\text{et}}, \text{Sym}^{10}(R^1\pi_*\mathbb{F}_l))^{\vee},$$
$$J_l(\overline{\mathbb{Q}})[l].$$

Here $J_l = \operatorname{jac}(X_l)$, and $X_l = X_1(l), X_1(l)(\mathbb{C}) = \Gamma_1(l) \setminus (\mathbb{H} \cup \mathbb{P}^1(\mathbb{Q})).$

Problem: $g_l := \text{genus}(X_l)$ is approximately $l^2/24$.

Couveignes' suggestion: don't use computer algebra, but approximation and height bounds instead.

STRATEGY

We have:

$$J_{l}(\mathbb{C}) = \mathbb{C}^{g_{l}}/\Lambda, \quad \Lambda = H_{1}(X_{l}(\mathbb{C}), \mathbb{Z})$$
$$V_{l} \subset J_{l}(\mathbb{C})[l] = (l^{-1}\Lambda)/\Lambda$$
$$V_{l} = \bigcap_{1 \le i \le l^{2}} \ker (T_{i} - \tau(i))$$
$$\infty \in X_{l}(\mathbb{Q})$$

We choose:

$$f: X_{l,\mathbb{Q}} \twoheadrightarrow \mathbb{P}^1_{\mathbb{Q}}$$

as simple as possible.

STRATEGY

$$\phi \colon X_l(\mathbb{C})^{g_l} \longrightarrow J_l(\mathbb{C}) \longrightarrow \mathbb{C}^{g_l}/\Lambda$$

$$Q \longmapsto [Q_1 + \dots + Q_{g_l} - g_l \cdot \infty] = \sum_{i=1}^{g_l} \int_{\infty}^{Q_i} (\omega_1, \dots, \omega_{g_l}),$$

where $(\omega_1, \ldots, \omega_{g_l})$ is a basis of normalised newforms.

For x in $V_l \subset l^{-1} \Lambda / \Lambda$, there are $Q_{x,1}, \ldots, Q_{x,g_l}$, unique up to permutation, such that $\phi(Q_x) = x$ (well, ...).

Consider:

$$P_l := \prod_{x \neq 0} (T - \sum_i f(Q_{x,i})) \quad \text{in } \mathbb{Q}[T].$$

9

STRATEGY

Then K_l is the splitting field of P_l .

Show that the *(logarithmic) height* of the coefficients of P_l are $O(l^c)$. Recall: $h(a/b) = \log(\max(|a|, |b|))$ if $a, b \in \mathbb{Z}$, $b \neq 0$ and gcd(a, b) = 1.

Show that P_l can be approximated in $\mathbb{C}[T]$ with a precision of n digits, in time $O((ln)^c)$. Or approximated p-adically, or reductions mod many small primes....

HEIGHT BOUND

Theorem 3 (Edixhoven, de Jong) There is an integer c such that for all l we can take f in such a way that the height of the coefficients of P_l are bounded above by l^c .

Tool: Arakelov theory on X_l (Faltings' arithmetic Riemann-Roch, etc.).

To get an impression $(D := g_l \cdot \infty, B := \text{Spec}(O_{K_l}), \mathcal{X} \text{ a model of } X_l, D'_x = \sum_i Q_{x,i})$:

$$\begin{aligned} (D'_x,\infty) + \log \# \mathbb{R}^1 p_* O_{\mathcal{X}}(D'_x) &\leq -\frac{1}{2} (D, D - \omega_{\mathcal{X}/B}) + 2g_l^2 \sum_{s \in B} \delta_s \log \# k(s) \\ &+ \sum_{\sigma} \log \|\vartheta\|_{\sigma, \sup} + \frac{g_l}{2} [K_l : \mathbb{Q}] \log(2\pi) \\ &+ \frac{1}{2} \deg \det p_* \omega_{\mathcal{X}/B} + (D,\infty) \,, \end{aligned}$$

HEIGHT BOUND

 $\log \|\vartheta\|_{\sup} = O(l^6),$

 $h_{abs}(X_l) = O(l^2 \log(l)),$ (absolute Faltings height)

 $\sup_{a \neq b} g_{a,\mu}(b) = O(l^6), \quad \text{(Arakelov's Green function; Merkl)}.$

HEIGHT BOUND, A BYPRODUCT.

Theorem 4 A prime number $p \not| l$ is said to be *l*-good if for all x in $V_l - \{0\}$ the following two conditions are satisfied:

1. at all places v of K_l over p the specialisation $(D'_x)_{\overline{\mathbb{F}}_p}$ at v is the unique effective divisor on the reduction $X_l, \overline{\mathbb{F}}_p$ such that the difference with $D_{\overline{\mathbb{F}}_p}$ represents the specialisation of x;

2. the specialisations of the non-cuspidal part D''_x of D'_x at all v above p are disjoint from the cusps.

Then we have:

$$\sum_{p \text{ not } l \text{-good}} \log p \leq c \cdot l^{14}.$$

COUVEIGNES' FINITE FIELD METHOD

Theorem 5 (Couveignes) There is a probabilistic algorithm that on input l computes for p a prime that is l-good, the reductions $(D'_x)_{\overline{\mathbb{F}}_p}$ of the divisors D'_x on $X_{l,\overline{\mathbb{F}}_p}$, with an expected running time that is polynomial in l and p.

Tool: computer algebra on $X_{l,\mathbb{F}_p r}$, projecting random divisor classes into V_l using Hecke operators (well ...).

Why not polynomial in log p? Only because one needs the numerator of the zeta function of X_{l,\mathbb{F}_p} .

Using Magma to do computations over \mathbb{C} , Johan Bosman has found, for l = 13, 17 and 19, polynomials P_l , of degrees $l^2 - 1$, and polynomials P'_l of degree l + 1.

We have no proof that these polynomials are correct, but they do pass the following tests:

1. the ring of integers of the corresponding number field ramifies only at *l*,

2. the reductions modulo small primes p correspond to the orbit structures of $\rho_l(\operatorname{Frob}_p)$ on $V_l - \{0\}$ and $\mathbb{P}(V_l)$.

 $2535853P'_{13} = 2535853x^{14} - 127713190x^{13} - 9947603692x^{12}$ $+ 795085450224x^{11} - 29425303073920x^{10}$ $+ 667684302673440x^9 - 9974188441308416x^8$ $+ 106364914419352576x^7 - 1012336515218109952x^6$ $+ 9094902359324720640x^5 - 60847891441699468288x^4$ $+ 324814691085008943104x^3$ $- 1761495929112889016320x^2$ + 6235371687080448827392x1076149592952250251011

-10767442738728520761344.

A polynomial that gives the same extension (found using LLL):

$$x^{14} + 7x^{13} + 26x^{12} + 78x^{11} + 169x^{10} + 52x^9 - 702x^8 - 1248x^7 + 494x^6 + 2561x^5 + 312x^4 - 2223x^3 + 169x^2 + 506x - 215,$$

Required precision as suggested by Bosman's computations:

```
about 80 digits for l = 13 (genus 2),
```

```
400 digits for l = 17 (genus 5),
```

```
and 830 digits for l = 19 (genus 7).
```

For l = 19 the computations were distributed over several machines and still took a couple of months.

It seems that it is hard to get much further.

Using same methods, Johan Bosman could also produce a polynomial that gives a $SL_2(\mathbb{F}_{16})$ extension of \mathbb{Q} (was still missing in tables of Jürgen Klüners), corresponding to a weight 2 modular form on $\Gamma_0(137)$ (genus 11).

Klüners has checked that the Galois group is indeed $SL_2(\mathbb{F}_{16})$.

In this case, Bosman tries to *prove*, using Khare-Wintenberger, that his representation is right one.

DETERMINISTIC VERSION?

Theorem 6 (Couveignes, arxiv) The operations of addition and subtraction in the complex Jacobian $J_0(l)(\mathbb{C})$ of $X_0(l)$ can be done in deterministic polynomial time in l and the required precision. More precisely, given elements P, Q and R of $X_0(l)^g$, elements S and D of $X_0(l)^g$ can be computed in time polynomial in l and the required precision, such that $\phi(S) = \phi(Q) + \phi(R)$ and $\phi(D) = \phi(Q) - \phi(R)$ hold within the required precision. Moreover, for x in \mathbb{C}^g/Λ , one can compute Q in $X_0(l)^g$ in time polynomial in l and the required precision, such that $\phi(Q) = x$ holds within the required precision.

This result will almost certainly be generalised to all curves $X_1(n)$, giving deterministic versions of Theorems 1 and 2.

THE END

Thank you for your attention!

Questions?