
Schoof’s Original Algorithm is Practical
for Elliptic Curves of Cryptographic Size

Nikki Pitcher
supervised by Daniel J. Bernstein

July 6, 2006

Abstract
In 1985, Schoof’s algorithm for counting points on elliptic curves was intro-
duced. It is widely believed that Schoof’s original algorithm is not practical
for use with elliptic curves of cryptographic size — currently between 160
bits and 256 bits. For example, consider the following statements:

Schoof, “Counting points on elliptic curves over finite fields,” Jour-
nal de Théorie des Nombres de Bordeaux 7 (1995), page 219: “This
deterministic polynomial time algorithm was impractical in its original
form.”

Couveignes, Dewaghe, and Morain, “Isogeny cycles and the Schoof-
Elkies-Atkin algorithm,” LIX/RR/96/03 (1996), page 1: “From a
practical point of view, the problem is the size of the torsion poly-
nomials. Indeed, fE` (x) is of degree O(`2). In practice one cannot
hope to compute t mod ` in this way for ` > 31, say.”

Blake, Seroussi, and Smart, “Elliptic curves in cryptography,” Lon-
don Mathematical Society (1999), pages 111–112: The benefit of fast
multiplication in Schoof’s original algorithm is “mostly theoretical, and
hard to realize in practical implementations”; the algorithm “will gen-
erally not suffice for the parameter ranges of practical interest.”

Vanstone, 5 July 2004 talk discussing Schoof’s algorithm in the 1990s,
according to notes by Bernstein: “For cryptographically interesting
curves it just couldn’t be used.”

As a consequence, it is widely believed that point counting became practical
only after Schoof’s algorithm was improved by Elkies and Atkin.

Schoof’s original algorithm is, in fact, practical for use with cryptographic-
sized elliptic curves. For example, my implementation of Schoof’s origi-
nal algorithm (without improvements due to Elkies, Atkin, or Baby-Step
Giant-Step) computes #E(Fp) in 1285 seconds (on a 2000MHz Athlon
64 X2) for a 160-bit prime p, and in 11948 seconds for a 256-bit prime p.
The 160-bit computation could have been performed in under a day on a
computer available in 1985. For comparison, Magma’s implementation of
the Schoof-Elkies-Atkin algorithm takes 413 seconds for a 448-bit prime p
on a 3400MHz Pentium 4. Certainly the Elkies and Atkin improvements
are valuable, but these improvements are not as drastic as is widely believed.

The speed of Schoof’s original algorithm is of interest not only for histori-
cal reasons, but also for other applications of the underlying computational
techniques, such as counting points in the Jacobian of a genus-2 hyperelliptic
curve.

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 10 100 1000

tim
e

(c
lo

ck
 c

yc
le

s)

size of base field (bits)

Original Schoof versus Magma’s SEA Times
Original Schoof

Magma’s SEA

Methodology
The software reported in this poster computes #E(Fp) given an odd prime

p and an elliptic curve E over Fp in short Weierstrass form y2 = x3+ax+b.
The software has several levels of subroutines that work as follows:

To multiply in Z: Use the GMP package.

To multiply in Z[x], input coefficients below p: Evaluate polyno-

mials at x = 2562blog256 pc+6, multiply in Z, and extract the product in Z[x].

To multiply in (Z/pZ)[x]: Multiply in Z[x] and reduce coefficients mod
p by first multiplying a precomputed reciprocal of p.

To multiply in (Z/pZ)[x]/ψ` where ` is an odd prime and ψ` is
the `th division polynomial: Multiply in (Z/pZ)[x] and reduce mod
ψ` by first multiplying a precomputed reciprocal of ψ`.

To multiply in R = ((Z/pZ)[x]/ψ`)[y])/(y
2 − x3 − ax − b): Use

((Z/pZ)[x]/ψ`)[y] and reduce mod (y2 − x3 − ax − b) by replacing y2 by
x3 − ax− b.

To add points on curve over R: Add points on the curve using
projective coordinates over R.

To compute [n]P on curve over R: Compute scalar multiplications
using repeated point doubling and addition on the curve over R.

To compute t mod ` where t = p+1−#E(Fp): Exploit the equa-

tion [t mod `][xp : yp : 1] = [xp
2
: yp

2
: 1] + [p][x : y : 1] over R. First com-

pute [xp
2
: yp

2
: 1], [xp : yp : 1], and [p][x : y : 1] over R, and then compute

the discrete logarithm in 0,1,...,`-1 of the point [xp
2

: yp
2

: 1] + [p][x : y : 1]
base [xp : yp : 1].

To compute t where t = p+1−#E(Fp): Find enough small primes
` to have

∏
` > 4

√
p. Compute t mod ` for each `; recover t mod

∏
` by

the Chinese remainder theorem; recover t using the fact that |t| ≤ 2
√
p.

Time
The following table shows the average time in clock cycles to calculate
#E(Fp) for various sizes of p using Schoof’s original algorithm on an
AMD Athlon 64 X2 Dual Core Processor 3800+ and Magma version V2.12-
10’s SEA algorithm on an Intel Pentium 4 CPU 3400MHz.

bits in p Original Schoof maximum ` Magma SEA
32 2000000000 17 102000000
64 50000000000 31 340000000
128 1080000000000 59 4964000000
160 2432000000000 67 14143000000
192 6082000000000 79 28288000000
224 13382000000000 89 42806000000
256 23896000000000 103 98056000000
320 71106000000000 131 217872000000
384 164712000000000 151 522376000000
448 324060000000000 173 1404370000000

Conclusion
Schoof’s Algorithm in its original form is practical for use with elliptic curves
of cryptographic size.

