
1. Ring Theory II

In this chapter we continue to study the structure of rings. We
especially consider special types of rings, group rings, polynomial rings,
Artinian and Noetherian rings. All these types of rings are important
because of their widespread applicability, especially in the context of
calculations with algebraic objects. Polynomials are used to generate
algebraic extensions of fields, for defining curves and surfaces. They
belong to the most important tools in algebra. Noetherian rings will
frequently be used in calculations since their ideals have a finite number
of generators, hence arithmetic can be done explicitly with those.

2. Group Rings and Polynomial Rings

The study of group rings is a relatively new topic of classical algebra.
It was initiated by the idea that rings possess more structural properties
than groups, hence, if one associates a suitable ring to a group then the
structure of that so-called group ring should reveal structural aspects
of the underlying group. We cannot cover this topic in full generality.
Hence, we recommend that the reader concentrates on the applications
to polynomial rings later in this section.

Definition 2.1. Let S be a semigroup and R be a ring. Then we define
a semigroup ring R[S] via

R[S] := {f : S → R | f(s) = 0 for almost all s ∈ S}
with operations

addition : f + g : S → R : s 7→ f(s) + g(s) ,

multiplication : f g : S → R : s 7→
∑

t1t2=s
t1,t2∈S

f(t1) g(t2)

for all f, g ∈ R[S].

Whereas the definition of addition is straighforward the notion of
multiplication seems to be kind of artificial at first glance. However, if
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we look at polynomials in one variable t with coefficients in R (for sim-
plicity’s sake let us assume that R = R as in highschool) then S is just
the semigroup (Z≥0,+) and a map f designs the coefficient f(m) to the
power tm, i.e. the map f stands for the polynomial

∑
i≥0 f(i)ti, where

the formally infinite sum is actually finite because of the condition im-
posed on f . On the other hand, when we multiply two polynomials
given in their usual representation, say

∑n
i=0 ait

i and
∑m

j=0 bjt
j, it is

quite cumbersome to write down their product:

n+m∑
k=0

(
k∑

l=0

albk−l)t
k ,

where we must additionally require al = 0 (l > n) , bk−l = 0 (k − l >
m). This shows why the notion of semigroup rings is advantageous.
The advantages will become even more clear when we consider polyno-
mials in several variables. Using the notion of semigroup rings we just
choose S = ((Z≥0)n,+) to obtain a polynomial ring over R in n vari-
ables. The usual problems, like showing that the order of variables does
not matter, are no longer present, this becomes an easy consequence of
the analogous property for the direct product of (semi) groups (shown
in chapter 2.6).

We leave the verification of the ring axioms for R[S] as an exercise
to the reader. As a precedent we establish the law of associativity for
multiplication:
For arbitrary s ∈ S we have

(f (g h)) (s) =
∑

t1t4=s

f(t1) (g h) (t4)

=
∑

t1t4=s

f(t1)
∑

t2t3=t4

g(t2)h(t3)

=
∑

t1t2t3=s

f(t1) g(t2)h(t3)

=
∑

t5t3=s

( ∑
t1t2=t5

f(t1)g(t2)

)
h(t3)

=
∑

t5t3=s

(fg) (t5)h(t3)

= ((f g)h) (s).

Next we consider the necessary premises for embedding R, S into R[S].
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(1) Let S be a monoid with unit element e. We put

ιR : R→ R[S] : r 7→ fr with fr(s) =

{
r for s = e
0 otherwise

}
.

Then ιR is a ringmonomorphism because of

fr+r̃(s) =

{
r + r̃ for s = e
0 otherwise

}
=

{
r for s = e
0 otherwise

}
+

{
r̃ for s = e
0 otherwise

}
= fr(s) + fr̃(s) ,

frr̃(s) =

{
rr̃ for s = e
0 otherwise

}
=

∑
t1t2=s

{
r for t1 = e
0 otherwise

}{
r̃ for t2 = e
0 otherwise

}
= (fr fr̃)(s) ,

and ker(ιR) = {0}.

(2) Let R be a unital ring. We put

ιS : S → R[S] : s 7→ Fs with Fs(t) =

{
1 for t = s
0 otherwise

}
=: δts ,

where δts denotes the Kronecker symbol whose value is 1 if
both indices coincide and otherwise 0.
ιS is a homomorphism because of

Fss̃(t) = δt,ss̃

=

{
1 for ss̃ = t
0 otherwise

}
=

∑
t1t2=t

δt1s δt2s̃

=
∑

t1t2=t

{
1 for t1 = s
0 otherwise

}{
1 for t2 = s̃
0 otherwise

}
= (Fs Fs̃)(t) .

Obviously, ιS is injective and therefore a monomorphism.
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If additionally S is a monoid then R[S] has a unit element
with respect to multiplication, namely Fe:

(Fe f)(t) =
∑

t1t2=t

Fe(t1) f(t2)

=
∑

t1t2=t

δet1 f(t2)

= f(t) for all f ∈ R[S] .

(3) In case R 3 1 we obtain

R[S] =

{∑
s∈S

as Fs

∣∣∣∣∣ as ∈ R, as = 0 for almost all s ∈ S

}
.

If we identify s ∈ S with its image Fs = ιS(s) this becomes

R[S] =

{∑
s∈S

as s

∣∣∣∣∣ as ∈ R, as = 0 for almost all s ∈ S

}
.

Then all calculations in R[S] are easy:

α

(∑
s∈S

as s

)
=

∑
s∈S

(α as) s ∀α ∈ R,

∑
s∈S

as s+
∑
s∈S

bs s =
∑
s∈S

(as + bs) s,

(∑
s∈S

as s

) (∑
t∈S

bt t

)
=

∑
s,t∈S

as bt s t =
∑
u∈S

(∑
st=u

as bt

)
u.

Examples

(1) S = {tν | ν ∈ Z≥0} ∼= Z≥0, R a unital commutative ring.

R[S] =

{
∞∑

ν=0

aν t
ν

∣∣∣∣∣ aν ∈ R, aν 6= 0 for only finitely many ν

}
=: R[t]

is the polynomial ring in the variable t over R. The elements
of R[t] are written as

f(t) =
∞∑
i=0

aν t
ν

with aν ∈ R, almost all aν = 0. Polynomials in one varable are
usually called univariate polynomials.
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(2)

S =
n∏

i=1

{tνi
i ∈ Z≥0} ∼= (Z≥0)n , R a unital commutative ring .

The elements of S can be written in the form tν := tν1
1 · . . . · tνn

n

with ν ∈ (Z≥0)n. Then

R[S] =

 ∑
ν∈(Z≥0)n

aνt
ν

∣∣∣∣∣∣ aν ∈ R, aν 6= 0 for only finitely many ν

 =: R[t]

is the polynomial ring in n variables t1, . . . , tn over R with
elements

f(t) =
∑

ν∈(Z≥0)n

aνt
ν (aν ∈ R, almost all aν = 0) .

Polynomials in several variables (n ≥ 2) are usually called mul-
tivariate polynomials.

(3) S a group, R a unital ring. R[S] is called group ring. Knowl-
edge about the group ring yields information about the group
itself. We cite without proof a result of Higman: If G, H are
finite abelian groups with Z[G] ∼= Z[H] then G and H are iso-
morphic.

As we already mentioned important results on polynomial rings im-
mediately follow from the properties of the semigroup used for their
construction.

For example, we get

R[t1, ..., tn, tn+1] ∼= R[t1, ..., tn] [tn+1],

R[t1, ..., tn] ∼= R[tπ(1), ..., tπ(n)] ∀π ∈ Sn

as an immediate consequence of the corresponding statements for direct
products of (semi) groups.

For the elements of the monoid (Z≥0)n we can introduce an ordering
via

tν ≥ tµ ⇔ ν ≥ µ .

There are various possibilities. We just mention the two most popular
ones:
(i) lexicographic ordering
We put ν ≥ µ if and only if there exists an index i ∈ {1, ..., n} with
νj = µj (j < i) and νi > µi. This means that for the smallest index i
for which the coordinates of ν and µ differ the i-th coordinate of ν is
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larger than that of µ.
(ii) graded lexicographic ordering
We put ν ≥ µ if either

∑n
i=1 ν

2
i >

∑n
i=1 µ

2
i or, in case both sums are

equal, ν is lexicographically greater than µ (including the case ν = µ).
Here we first compare the Euclidean lengths of ν and µ and only if they
are equal we make use of lexicographic ordering.

For a thorough study of (multivariate) polynomials we need to intro-
duce a few definitions which will be mostly familiar from high school
arithmetic.

Definition 2.2. Let

f(t) =
∑

ν∈(Z≥0)n

aνt
ν

be an element of the polynomial ring R[t]. The single summands aνt
ν

are called monomials. The degree of a non-zero monomial is defined
as the sum of its exponents: ν1 + . . .+νn. The degree deg(f) of a non-
zero polynomial f is the maximum of the degrees of its monomials. The
degree of 0 (as monomial or as polynomial) is formally defined to be
−∞. If we have a total ordering on the exponents - and therefore on the
monomials - the coefficient of the largest monomial is called leading
coefficient l(f), sometimes also headterm. In case l(f) = 1 the
polynomial f is called monic.

We shortly consider the behavior of the degree function with respect
to the addition and multiplication of polynomials. Comparing the de-
grees of the occuring monomials we immediately see that

deg (f + g) ≤ max {deg (f), deg (g)}
deg (f g) ≤ deg (f) + deg (g) .

The last inequality becomes an equation, if l(f), l(g) are no zero divi-
sors.

Hence, the degree of the product of two polynomials equals the sum
of their degrees over entire rings R. The property to be entire is there-
fore transfered from R to R[t]:

R[t] entire ring ⇔ R entire ring .

Because of the behavior of the degree function mentioned above we
also obtain the result that the units of R and of R[t] coincide:

f ∈ U(R[t]) ⇔ f ∈ U(R) .

We will consider further properties of rings with respect to whether
they transfer from R to R[t].
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Theorem 2.3. (Hilbert’s Basis Theorem) Let R be a unital com-
mutative ring. If R is noetherian then also R[t] is noetherian.

Proof Let A be an ideal of R[t]. Then we consider the polynomials
of A of degree i ∈ Z≥0 and put

ai := {x ∈ R | x = lc(f) for an f ∈ A with deg(f) = i} ∪ {0} .

The ai are ideals in R because of

(1) for f, g ∈ A with deg(f) = deg(g) = i we either have lc(f+g) =
lc(f) + lc(g) 6= 0 or deg(f + g) < i and the coefficient of ti of
f + g is zero,

(2) for a = lc(f) ∈ ai, r ∈ R we have ra = 0 or rf ∈ A with
deg(rf) = i and lc(rf) = ra ∈ ai .

Since we can multiply elements of A by t we obtain

a0 ⊆ a1 ⊆ . . . ⊆ ar ⊆ . . . .

Since R is noetherian this chain becomes stationary. Let r ∈ Z≥0 be
minimal with ar = ar+k ∀k ∈ N. Since R is noetherian each ideal ai

has finitely many generators ai1, . . . , aini
(ni ∈ N) for 0 ≤ i ≤ r. We

fix elements fij ∈ A with deg(fij) = i and lc(fij) = aij for 0 ≤ i ≤
r, 1 ≤ j ≤ ni. We will show that A = B for

B := 〈fij | 0 ≤ i ≤ r , 1 ≤ j ≤ ni〉 .

Clearly, B is contained in A. On the other hand, let f ∈ A with
deg(f) = d. The proof of f ∈ B is carried out by induction on d. For
d = 0 there is nothing to show since f is contained in a0 ⊆ B. We let
therefore be d > 0 and assume that all elements of A of degree less
than d belong to B. We need to consider two cases.

(1) For d > r we have

ad = 〈lc(td−rfr1), . . . , lc(t
d−rfrnr)〉 ,

there exist γ1, . . . , γnr ∈ R such that

g := f −
nr∑
i=1

γit
d−rfri

is a polynomial of A with deg(g) < d.
(2) For d ≤ r we analogously obtain a polynomial

g := f −
nd∑
i=1

γ̃ifdi

of degree less than d in A.
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According to our induction assumption in both cases the difference
polynomial g belongs to the ideal B, hence the polynomial f itself.
This finishes the proof of A = B, the ideal A is finitely generated and
therefore R[t] noetherian.

2

Applying the preceding theorem n times we obtain that for noether-
ian rings R the polynomial ring in n variables R[t] is noetherian, too.

A similar discussion whether the properties of a ring R to be a prin-
cipal ideal ring or a factorial ring transfer to R[t] (and therefore to
R[t]) is postponed to the next section.

3. Univariate Polynomials

Univariate polynomials play a predominant role among all polyno-
mials. This is mainly due to the fact that polynomial rings in one
variable over a field have nicer properties than those with several vari-
ables. Also, polynomial rings in n > 1 variables could be considered
as polynomial rings in one variable over a polynomial ring in n − 1
variables as base ring. This is usually not the appropriate approach,
however, and therefore we shall consider univariate and multivariate
polynomials in separate sections.

We begin with basic properties which will be of importance later on.

Definition 3.1. Let Λ be a unital overring of R, i.e. 1Λ = 1R, then
for every x ∈ Λ the mapping

Φx : R[t]→ Λ : f(t) 7→ f(x)

is a ring homomorphism with Φx|R = IdR. Hence, it leaves every el-
ement of R invariant and is therefore called an R-homomorphism.
Since Φx maps a polynomial to a ring element it is also called a spe-
cialization of the polynomial f(t) to its value f(x).

That Φx is indeed a ring homomorphism can be easily verified and
is left as an exercise to the reader.

Definition 3.2. Let Λ, R be as in the previous definition. An element
x ∈ Λ is called zero of f(t) ∈ R[t], if f is in the kernel of Φx. This is
clearly tantamount to the more familiar version that f(t) specializes to
0 at x.

Proposition 3.3. Let R be a unital entire ring. An R-homomorphism
ϕ : R[t] → R[t] is an isomorphism exactly for ϕ (t) = at + b with
a ∈ U(R), b ∈ R.
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Before we actually proof this we emphasize that everyR-homomorphism
ϕ : R[t] → Λ is uniquely determined by the image ϕ (t). This is be-
cause of

ϕ

(
n∑

i=0

ai t
i

)
=

n∑
i=0

ϕ(ai t
i) =

n∑
i=0

ϕ(ai)ϕ(t)i =
n∑

i=0

ai ϕ(t)i .

Proof For ϕ (t) = at+ b with a ∈ U(R), b ∈ R the inverse mapping
is given by ϕ−1(t) = a−1(t− b) satisfying ϕ◦ϕ−1 = IdR[t]. On the other
hand, if ϕ is an R[t]-isomorphism then ϕ maps t onto some polynomial
of R[t], say ϕ(t) = g(t) :=

∑n
i=0 ait

i ∈ R[t] and ϕ being surjective there
exists f(t) =

∑m
j=0 bjt

j ∈ R[t] with t = ϕ(f(t)). This yields

t = ϕ(f(t)) = ϕ(
m∑

j=0

bjt
j) =

m∑
j=0

bjϕ(t)j =
m∑

j=0

bjg(t)
j = f(g(t))

and comparing degrees we obtain

1 = deg(t) = deg(f(g(t)) = deg(g) deg(f) .

The latter is possible only for deg(f) = deg(g) = 1, hence g(t) =
at+ b, f(t) = ct+ d (a, b, c, d ∈ R). From

t = f(g(t))

= c (at+ b) + d

= cat+ bc+ d

we deduce 1 = ac, 0 = bc+ d and therefore a ∈ U(R).
2

Definition 3.4. Let Λ be a unital overring of the ring R. An element
x ∈ Λ is called algebraic over R, if the mapping ϕx : R[t] → Λ is
not injective, i.e. there exists a polynomial f(t) ∈ R[t] with f(x) = 0,
x is a zero of a suitable non-constant polynomial of R[t]. If x is not
algebraic over R it is called transcendental over R.

Examples
√

2 ∈ R is algebraic over Z since it is a zero of f(t) =
t2− 2 ∈ Z[t]. e, π ∈ R are transcendental over Z (respectively Q). For
a proof of the last statement the reader is refered to [?].

Because of the definition of algebraic elements it is important to
characterize zeros of polynomials by purely polynomial ring properties.
This is achieved upon showing that we can have division with remainder
in polynomial rings and will surely have it in case R is a field.
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Proposition 3.5. Let us assume that f(t), g(t) are polynomials in
R[t] with the leading coefficient of g being a unit in R. Then there
exist polynomials q(t) := q(f, g)(t), r(t) := r(f, g)(t) ∈ R[t] satisfying
f(t) = q(t)g(t) + r(t) and deg(r) < deg(g). (This includes r = 0 with
deg(r) = −∞ since our assumption on l(g) yields g 6= 0.)

Proof Since the polynomials q, r are given explicitly via calcula-
tions in R we give an algorithmic proof.

Algorithm 1. (division with remainder for polynomials)
Input Polynomials f(t), g(t) ∈ R[t] with l(g) ∈ U(R).
Initilization Set m := deg(g), r0 := f, q0 := 0, i := 0, deg(ri) =:
mi.
Step While ki := mi −m ≥ 0 set

λi := l(ri)/l(g)

ri+1 := ri − λig(t)t
ki

qi+1 := qi − λit
ki

and increase i by 1.
Output Polynomials q(t) := qi(t), r(t) := ri(t) ∈ R[t] with f(t) =
q(t)g(t) + r(t) and deg(r) < deg(g).

In each step from the remaining polynomial ri (initially f(t)) the
polynomial (l(ri)/l(g)g(t)t

deg(ri)−deg(g) is subtracted. This decreases the
degree of the remainder. It can be carried out until the degree of the
remainder becomes smaller than deg(g). The divison of the leading
coefficients is always possible in R since we assumed l(g) ∈ U(R).

2

Remark We note that division with remainder is always possible
in case g(t) is monic.

Proposition 3.6. Let R be a unital commutative ring, f(t) ∈ R[t] with
deg(f) ≥ 1 and Λ be a unital overring of R. x ∈ Λ is a zero of f(t), if
and only if (t− x) divides f(t) in Λ[t].

Proof Division with remainder can be carried out in Λ[t] since
l(t− x) = 1 is a unit in Λ. It follows

f(t) = Q(f, t− x) (t− x) +R(f, t− x)



11

with deg(R(f, t− x)) < deg(t− x) = 1, hence R(f, t− x) is constant.
Now we specialize t 7→ x:

x zero ⇔ 0 = f(x)

⇔ R(f, t− x) (x) = 0

⇔ R(f, t− x) = 0.

2

For division with remainder in polynomial rings (pseudodivision)
see the detailed exercise 1. Here we just present an illustrative example.

Example For R = Z the polynomial f(t) = t3− 2 is not divisible
by g(t) = 2t − 1 in R[t]. However, if we multiply the first polynomial
with l(g)deg(f)−deg(g)+1 we obtain

23(t3 − 2) = (4t2 + 2t+ 1) (2t− 1)− 15 in Z[t] .

(The reader is advised to carry out this example with the algorithm
given above.)

If the underlying ring is a field F then division with remainder is
always possible in case g(t) is non–zero. Hence, the polynomial ring
F [t] becomes a Euclidean ring with the degree function as Euclidean
function.

Theorem 3.7. A polynomial ring F [t] over a field F is a Euclidean
ring.

We note that repeated divison with remainder yields the greatest
common divisor of two polynomials exactly as it did for two rational
integers. Since F [t] is Euclidean and therefore a principal ideal ring we
even obtain a representation of the greatest common divisor in terms
of f, g because the principal ideal gcd(f, g) equals the ideal f(t)F [t] +
g(t)F [t] (see exercise ...). This is of importance for finite extensions of
fields, for example.

We model repeated division with remainder for two polynomials f, g
as follows. A sequence of polynomials (fi)i∈Z≥0 is calculated via f0 :=
f, f1 := g and – for fi+1 6= 0 – fi = qi+1fi+1 + fi+2 by division with
remainder.

Let f(t), g(t) ∈ F [t] be given. If both polynomials are 0 then their
greatest common divisor is also 0 by definition. It is represented as
0 = 0 · f + 0 · g. If 0 = f 6= g then the greatest common divisor is

1
l)g)
g(t). It is represented via gcd(f, g) = 0 · f + 1

l(g)
g. Analogously, for

0 = g 6= f we obtain gcd(f, g) = 1
l(f)

f + 0 · g. For the more interesting
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case fg 6= 0 we present the following algorithm. We note that we will
have fi = λif0 + µif1 at each step.

Algorithm 2. (polynomial gcd with presentation)
Input Non–zero polynomials f(t), g(t) ∈ F [t].
Initialization Set f0 := f, f1 := g, λ0 := µ1 := 1, λ1 := µ0 := 0
and i := 0.
Step While fi+1 6= 0 set

fi+2 := fi − qifi+1 (division with remainder)

λi+2 := λ1 − qiλi+1

µi+2 := µi − qiµi+1

then increase i by 1.
Output gcd(f, g) := 1

l(fi)
fi, λ := 1

l(fi)
λi, µ := 1

l(fi)
µi ∈ F [t] with

gcd(f, g) = λf + µg.

The algorithm is valid as the output polynomial fi(t) divides fi−1(t)
(because of fi+1(t) = 0); hence it also divides fi−2(t), ..., f1(t), f0(t).
On the other hand, any common divisor of f0(t) and f1(t) divides
f2(t); hence it also divides f3(t), ..., fi(t). Both properties yield fi(t) =
gcd(f0, f1).

After this excursion into computational aspects we proceed with a
few consequences of the last theorem. F [t] is a principal ideal ring and
a unique factorization ring. For an irreducible polynomial f(t) ∈ F [t]
the factorring F [t]/f(t)F [t] is again a field. In F [t] the number of
zeros of a polynomial – counted with respect of their multiplicities –
is bounded by the polynomial degree. (This is also true over entire
rings, but not in general, as the example t2 − 1 ∈ (Z/8Z)[t] shows, see
exercise ...)

Proposition 3.8. For unital commutative rings R the following equiv-
alence holds:

R[t] principal ideal ring ⇔ R field .

Proof We already showed that a polynomial ring over a field is a
principal entire ring. To show the opposite direction we consider the
ring epimorphism

ϕ0 : R[t]→ R : f(t) 7→ f(0) .

If R[t] is a principal ideal ring then it is a priori an entire ring and
therefore R itself must be an entire ring. The homomorphism theorem
for rings tells us that R ∼= R[t]/ ker (ϕ0), hence ker (ϕ0) is a prime ideal
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and therefore maximal in the principal entire ring R[t]. Therefore the
factorring R[t]/ ker (ϕ0) is a field. It is isomorphic to R because of the
surjectivity of ϕ0.

2

Remark An important consequence of this proposition is that
polynomial rings in more than one variable are not any more principal
ideal rings.

Contrary to this the property of being a factorial ring is transfered
from R to R[t]. This will be shown below.

Theorem 3.9. (Gauß) If R is a factorial ring than so is R[t].

The proof of Gauß’ theorem is a bit complicated and will be based
on preparatory lemmata.

Proposition 3.10. Let R be a unital commutative ring. If a is an
ideal (a prime ideal) of R, then a[t] := {f(t) =

∑n
i=0 ait

i ∈ R[t] | ai ∈
a (0 ≤ i ≤ n)} is an ideal (a prime ideal) of R[t].

Proof It is obvious that for an ideal a of R also a[t] is an ideal of
R[t].
Now let us assume that a is a prime ideal of R. For

f(t) =
n∑

i=0

ait
i, g(t) =

m∑
j=0

bjt
j ∈ R[t] \ a[t] ,

the polynomials f, g have coefficients ai, bj /∈ a for suitable indices i, j;
we choose i, j minimal with this property. Then the coefficient of ti+j

of the product of f and g satisfies

ci+j :=

i+j∑
k=0

ak bi+j−k ≡ aibj mod a ,

and therefore also ci+j is not in the ideal a. This implies fg /∈ a[t].
2

Definition 3.11. Let R be a factorial ring and f(t) =
∑n

i=0 ait
i ∈ R[t]

with deg(f) ≥ 0. Then I(f) := gcd{a0, a1, ..., an} is called content of
f(t). In case I(f) = 1 the polynomial f(t) is said to be primitive.

Remark If R is factorial then any polynomial f(t) ∈ R[t] with
deg(f) ≥ 0 can be written as a product of I(f) and a polynomial
fp(t) ∈ R[t] which is primitive. The polynomial fp(t) is also called the
primitive part of f(t).
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Proposition 3.12. If R is factorial then the product of two primitive
polynomials of R[t] is primitive.

Proof Let f(t), g(t) ∈ R[t] be primitive and h := f g. If I(h) is
not contained in U(R) then there exists a prime element π ∈ R which
divides all coefficients of h. Because of ?? the principal ideal Rπ is
a prime ideal, hence Rπ[t] is a prime ideal of R[t] according to the
previous proposition. From f g ∈ Rπ[t] we conclude that either f(t) or
g(t) is contained in Rπ[t], i.e. all coefficients of f or of g are divisible
by π contrary to our assumption I(f) = I(g) = 1.

2

Remark For arbitrary polynomials f, g over a factorial ring R
the content of their product I(fg) equals the product of their contents
I(f) and I(g). This is a direct consequence of the last proposition and
the remark preceding it.

The next lemma is known as Gauß’ lemma in the literature.

Lemma 3.13. Let R be a factorial ring with quotient field K = Q(R).
If h(t) ∈ R[t] has a positive degree and a factorisation h = f1f2 in
K[t], then there is also a factorisation h = cg1g2 in R[t] with primitive
polynomials g1, g2 and c ∈ R. There exist αi ∈ K with αifi = gi (i =
1, 2).

Proof Let λi be the least common multiples of the denominators
of the coefficients of fi (i = 1, 2). We put µi := I(λifi). Then the
primitive parts of gi := (λifi)p satisfy

λ1λ2 h = µ1µ2 g1g2 .

From this we conclude λ1λ2 I(h) = µ1µ2. It follows that µ1µ2 =
(λ1λ2) c (c ∈ R), hence, h = c g1 g2. The last statement is true
with αi = λi

µi
for i = 1, 2.

2

Remarks

(1) If f(t) ∈ R[t] \ R is irreducible then f remains irreducible in
Q(R)[t]. For example, if n ∈ Z is not a square then t2 − n is
irreducible in Z[t]. This implies

√
n /∈ Q. Putting it negative:

If f(t) ∈ R[t] is reducible in K[t], then it is also reducible in
R[t].

(2) Let f, g ∈ R[t] and g primitive with g | f in K[t]. Then g
divides f already in R[t].

(3) Two primitive polynomials f, g ∈ R[t] are associated in K[t] if
and only if they are associated in R[t].
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After this the proof of Gauß’ theorem is straightforward.
Proof of 3.9

We recall that the irreducible elements of R[t] belong to two separate
classes:

(1) irreducible elements of R,
(2) irreducible polynomials f(t) ∈ R[t] of positive degree.

R[t] is a unital entire ring since R has this property. Let f(t) ∈ R[t]
be fixed. Without loss of generality we assume that deg(f) > 0. In
the factorial ring K[t], K denoting the quotient field of R, f has a
factorisation into irreducible elements: f = q̃1 · . . . · q̃r with q̃i ∈ K[t].
By Gauß’ lemma 3.13 we obtain from this a factorisation

f = c q1 · . . . · qr
with

qi = αiq̃i ∈ R[t] (αi ∈ K, 1 ≤ i ≤ r)

primitive and irreducible, c ∈ R. Since R was assumed to be factorial
also c has a factorisation into irreducible elements in R.
If f admits two such factorisations in R[t], say

f = d q1 · . . . · qr = c p1 · . . . ps (deg (qi) > 0, deg (pj) > 0),

then the qi, pj are irreducible in K[t], too, hence we obtain r = s and
after a potential reordering qi = αipi (αi ∈ K, 1 ≤ i ≤ r). The qi and
pi are therefore associated in R[t]. It follows that d is also associated
to c. Since R is a factorial ring the theorem follows.

2

Since every polynomial of a factorial ring R[t] is a product of irre-
ducible ones the irreducible polynomials are of special interest. We
note that polynomials of degree one are necessarily irreducible. There
is an easy test whether a first degree polynomial at + b is a potential
divisor of an arbitrary polynomial:

(at+ b) |

(
n∑

i=0

ai t
n−i

)
obviouslyly implies a | a0, b | an.

Example Let us discuss for which a ∈ Z the polynomial f(t) =
t5 + at + 1 is irreducible in Q[t]. Since f is primitive, irreducibility in
Z[t] and in Q[t] is tantamount. We therefore need to look for potential
divisors of f in Z[t] only. If f is not irreducible, it must have a factor
of degree either one or two. Having a linear factor means having a
zero. We find that f(1) = a + 2, f(−1) = a, hence f is reducible for
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a ∈ {−2, 0}.
Next we are looking for quadratic factors:

t5 + at+ 1 = (t2 + α t+ β) (t3 + γ t2 + δ t+ ε) .

Calculating the right-hand side and comparing coefficients we get the
following system of equations:

α+ γ = 0, δ+ α γ + β = 0, ε+ α δ+ β γ = 0, α ε+ β δ = a, β ε = 1 .

We eliminate variables by setting

γ = −α, δ = α2 − β, ε = α (2β − α2)

and obtain from the two remaining equations either
β = ε = 1 in which case the only solution is 1 = a = α = −γ , δ = 0 ,
or
β = ε = −1 in which case there is no solution since the second relation
for ε becomes 1 = α(2 + α2).
Hence, the given polynomial is reducible if and only if a is 0,1 or -2.

In general there are very few powerful methods which allow to decide
irreducibility of a given polynomial. Here we discuss just two. (For R
being a finite field or for R = Q there are better methods which will
be introduced later.)

Theorem 3.14. (Eisenstein criterion) Let R be a factorial ring and
f(t) =

∑n
i=0 ai t

i ∈ R[t] be a polynomial of positive degree. If R
contains a prime element π such that π | ai (0 ≤ i < n), π2 - a0 and
π - an, then f(t) is irreducible in Q(R)[t].

Proof We assume that f(t) has a factorisation in Q(R)[t] into two
polynomials of positive degree. According to 3.13 we also get such a
factorisation in R[t] . We therefore assume that we have a factorisation
in R[t], say f(t) = g(t)h(t) with deg(g) deg(h) > 0. We put

g(t) =
d∑

i=0

bi t
i, h(t) =

m∑
j=0

cj t
j .

For the coefficients of the product of g and h we obtain the necessary
conditions

ai :=
i∑

k=0
k≤d

i−k≤m

bk ci − k (0 ≤ i ≤ n) .

From a0 = b0 c0 and π | a0, π
2 - a0 we conclude that π either divides

b0 or c0 but not both. Without loss of generality (g, h are arbitrary so
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far) we assume that π | b0 and π - c0. Then we will show by induction
that also π | bj (1 ≤ j ≤ d). Obviously, we have for d ≥ i > 0:

ai =
i∑

k=0
i−k≤m

bk ci−k =
i−1∑
k=0

i−k≤m

bk ci−k + bi c0 ≡ 0 mod π

because of our induction assumption. We conclude that π|bic0 and
because of π - c0 therefore π | bi. Eventually we obtain for i = d that
π | bdcm = an. This is certainly in contradiction to our premises.

2

Example

(1) Let a be an integer. If there exists a prime number p with p | a
and p2 - a then the polynomial tn − a is irreducible in Q[t] and
in Z[t]. Especially, it follows that n

√
a is not rational.

(2) In Q[t] the following polynomials are irreducible according to
3.14:

f1(t) = 3 t5 − 15 (p = 5),

f2(t) = 2 t10 − 21 (p = 3, 7),

f3(t) = 5 t5 − 12 t4 + 24 t3 + 2 t2 − 4 t+ 34 (p = 2).

We note that only the last two polynomials f2, f3 are also irre-
ducible in Z[t] since the content of f1 is 3 and therefore not a
unit in Z.

(3) For prime numbers p the p–th roots of unity are zeros of tp− 1,
they form a cyclic group of order p. tp − 1 ist reducible since
(t − 1) | (tp − 1). The formula for the sum of the geometric
series tells us that

tp − 1

t− 1
=

p−1∑
i=0

ti =: Φp[t] .

The polynomial Φp(t) is called p–th cyclotomic polynomial. Its
zeros lead to the construction of a regular p–gon, they yield a
division of the unit circle into p equal parts. Because t 7→ t+ 1
is an isomorphism of R[t] (see 3.3) we conclude that Φp(t) is
irreducible if and only if Φp(t + 1) is irreducible. This trick
of changing the variable allows an easy demonstration of the
irreducibility of Φp. (We remark that it can be employed also
to other polynomials to turn them into polynomials satisfying
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the Eisenstein criterion.) We calculate

Φp(t+ 1) =
(t+ 1)p − 1

(t+ 1)− 1

=

∑p
i=0

(
p
i

)
ti − 1

t

= tp−1 +

p−1∑
i=1

(
p

i

)
ti−1 ,

and in the resulting monic polynomial the coefficients(
p

i

)
=
p · (p− 1) · . . . · (p− i+ 1)

1 · . . . · i
(1 ≤ i ≤ p− 1)

are all divisible by p and the lowest one,
(

p
1

)
= p, is not divisible

by p2. Hence, Φp(t+ 1) is irreducible according to Eisenstein’s
criterion 3.14.

It should be noted that very few polynomials satisfy the premises of
Eisenstein’s criterion. In practice the following method is more power-
ful for proving irreducibility.

Theorem 3.15. (Reduction) Let R, S be two unital entire rings and
ϕ : R → S be a ring homomorphism with ϕ(1R) = 1S. Then ϕ can
be canonically extended to a ring homomorphism Φ : R[t]→ S[t] with
Φ|R = ϕ via

n∑
i=0

ait
i 7→

n∑
i=0

ϕ(ai)t
i .

Let f(t) ∈ R[t] with deg(Φ(f)) = deg(f) > 0. If Φ(f) is irreducible in
S[t] then f cannot be written as a product f = g h with deg(g) deg(h) >
0 in R[t].

Proof

(1) It is easily verified (see exercises) that

Φ : R[t]→ S[t] :
n∑

i=0

ai t
i 7→

n∑
i=0

ϕ (ai) t
i

is indeed a ring homomorphism. Its kernel is ker(Φ) = ker(ϕ)[t]
because of Φ|R = ϕ.

(2) If f = g h is a proper factorisation, i.e. (deg(g) deg(h) > 0)
in R[t], then there is a proper factorisation Φ(f) = Φ(g) Φ(h)
and deg (Φ (g)) ≤ deg (g), deg (Φ (h)) ≤ deg (h). Because of
deg (Φ (f)) = deg (f) and S being an entire ring we obtain upon
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comparing degrees that Φ (g) Φ (h) is a proper factorisation of
Φ (f). This is a contradiction to our premises.

2

The last theorem is frequently applied in irreducibility tests for poly-
nomials in Z[t]. In that case we choose R = Z, S = Z/pZ for a prime
number p with p - l(f).

Examples

(1) For f(t) = t3 + 39t2 − 4t+ 8 ∈ Z[t] we choose p = 3 : Φ (f) =
t3− t− 1 is irreducible in Z/3Z[t], since it does not have a zero
in Z/3Z.

(2) For f(t) = t2 + (10170 + 1)t + (1054821 + 343) ∈ Z[t] we choose
p = 2 : Φ (f) = t2 + t + 1 is irreducible in Z/2Z[t]. This is
of interest since the detection of a zero via the divisors of the
constant coefficient is practically impossible in this case.

Our next subject will be the study of calculating solutions of equa-
tions. Let R be a unital commutative ring and f(t) ∈ R[t], say
f(t) =

∑n
i=0 ai t

n−i. We want to find an element x either in R or
in a unital overring Λ which satisfies f(x) = 0. If a0 is not a zero
divisor the multiplication by an−1

o yields:

(a0x)
n + a1(a0x)

n−1 + . . .+ ana
n−1
0 = 0 .

Hence, every solution y ∈ R of yn + a1y
n−1 + . . . + ana

n−1
0 = 0 cor-

responds to a solution x = y
a0

in Q(R) and vice versa. Therefore we
will assume that f is monic from now on. A unital overring Λ of R in
which f has a zero is called solution ring of the equation f(x) = 0.

Lemma 3.16. Let R be a unital commutative ring and f(t) ∈ R[t]
monic of positive degree. Then Λ := R[t]/f(t)R[t] is a solution ring of
f . We note that R can be embedded into Λ.

Proof The ring Λ has an R–basis tν + f(t)R[t] (0 ≤ ν < deg(f)),
since every polynomial g(t) ∈ R[t] can be decomposed in R[t] into

g(t) = Q(g, f)(t) f(t) + R(g, f)(t) with deg(R(g, f)) < deg(f)

by division with remainder. Hence, every residue class modulo f(t)R[t]
contains a unique representative of degree less than deg(f) and that
representative can be written as a linear combination of the tν+f(t)R[t]
(0 ≤ ν < deg(f)) with coefficients in R. Such a presentation is also
unique since the difference of two different polynomials of degree <
deg(f) each is again a polynomial of degree < deg(f). Since that
difference is non zero it does not represent the class f(t)R[t].
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By construction of Λ we have f(t + f(t)R[t]) = f(t) + f(t)R[t] =
f(t)R[t], i.e. x := t+ f(t)R[t] is a zero of f in Λ.
An embedding of R into Λ is given by

τ : R→ Λ : a 7→ a+ f(t)R[t] .

2

Remark The ring Λ = R[t]/f(t)R[t] has the following 3 proper-
ties:

(1) Λ is a unital overring of R.
(2) Λ is generated over R by a zero x = t + f(t)R[t] ∈ Λ of the

polynomial f and has an R–basis of deg(f) elements.
(3) For every solution ring S in which f(t) has a zero y there exists

a ring homomorphism

ϕ : Λ→ S :

deg(f)−1∑
i=0

ait
i + f(t)R[t] 7→

deg(f)−1∑
i=0

aiy
i .

A unital overring of R with these three properties is called equation
ring for f(x) = 0. We emphasize that in equation rings (and similarly
in solution rings) all calculations can be carried out easily. This will
be demonstrated now. Let us assume that

f(t) = tn +
n∑

i=1

ξit
n−i ∈ R[t] .

Then any α ∈ Λ has a unique presentation

α =
n−1∑
i=0

aix
i (ai ∈ R) .

Two elements α and β =
∑n−1

j=0 bjx
j of Λ can be added by just adding

coefficients:

α+ β =
n−1∑
i=0

(ai + bi)x
i .

Multiplication is only slightly more difficult. The immediate result

αβ =
2n−2∑
k=0

(
k∑

l=0

albk−l

)
xk (al = 0 (l ≥ n) , bk−l = 0 (k − l ≥ n))

must however be reduced to powers xk with k < n. But this is exactly
what the purpose of a solution ring is. Namely, we recursively obtain
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basis presentations for all powers of x via

xn = −
n∑

i=1

ξix
n−i ,

xn+1 = −
n∑

i=2

ξix
n+1−i − ξ1

(
−

n∑
i=1

ξix
n−i

)
.

If we assume that we know the coefficients of the presentation

xk =
n−1∑
i=0

akix
i

we get the coefficients ak+1,i of the presentation for xk+1 immediately
from

xk+1 =
n−1∑
i=1

ak,i−1x
i −

n−1∑
i=0

ak,n−1ξn−ix
i ,

hence

ak+1,i = ak,i−1 − ak,n−1ξn−i (0 ≤ i ≤ n− 1 , ak,−1 := 0) .

Examples

(1) Let R = Z/8Z and f(t) = t2 − 1 ∈ R[t]. Λ = R[t]/f(t)R[t]
has an R–basis 1 + f(t)R[t], t + f(t)R[t] =: x. On the other
hand, R itself is a solution ring and we therefore have ring
homomorphisms

ϕ : Λ→ R via t+ f(t)R[t] 7→ α with α ∈ {1, 3, 5, 7} .

This situation is enlightened by the following diagram:
a(1 + f(t)R[t]) + b(t + f(t)R[t]) 7→ a + α b

(a(1 + f(t)R[t]) + b(t + f(t)R[t]))(c(1 + f(t)R[t]) + d(t + f(t)R[t])) 7→ (a + α b) (c + α d)
‖ ‖

ac(1 + f(t)R[t]) + (ad + bc)(t + f(t)R[t]) + bd(1 + f(t)R[t]) (ac + α2bd) + α (ad + bc)
‖ ‖

(ac + bd)(1 + f(t)R[t]) + (ad + bc)(t + f(t)R[t]) (ac + bd) + α (ad + bc) .

(2) If f(t) = t3 + pt2 + qt + r ∈ R[t] has a zero x in Λ then the
polynomial f(t) decomposes in Λ[t], one factor being t − x.
Dividing f in Λ[t] by t− x we obtain

f(t) = (t− x) (t2 + (p+ x) t+ q + x (x+ p)) .

Comparing coefficients we get the following relation for r in Λ:
r = −x (x (x+ p) + q).
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(3) Let us assume that t2 + m is irreducible over R (for exam-
ple, m = 1, R = R or m = −2, R = Z/5Z). Then Λ :=
R[t]/f(t)R[t] has a basis 1, x := t + f(t)R[t]. Therefore we
have R[t]/f(t)R[t] ∼= R × R. But what does the ring structure
on R × R look like? Addition is clearly done coordinatewise.
Multiplication needs to be transfered from Λ, however. Because
of x2 = −m we obtain

(a+ bx) · (c+ dx) = ac−mbd+ (bc+ da)x , hence

(a, b) · (c, d) = (ac−mbd, bc+ da)

in R×R.

Corollary 3.17. By a (deg(f)−1)–fold application of the construction
in 3.16 we obtain a ring S(f, R) (splitting ring of f over R) with
deg(f)! basis elements over R.

Proposition 3.18. Let F be a field and f(t) ∈ F [t] of positive degree.
Then there exists an extension field E of F in which f has a zero.

Proof In F [t] the polynomial f splits into a product of irreducible
polynomials. We assume that g is such an irreducible factor. In case
deg(g) = 1 the polynomial g (and therefore f) has a zero in F . Now let
us assume that deg(g) > 1. Since F [t] is a principal ideal ring the ideal
g(t)F [t] is maximal. Hence, E := F [t]/g(t)F [t] is a field. According to
3.16 the polynomial g (and therefore f) has a zero in E.

2

Theorem 3.19. Let F be a field and f(t) ∈ F [t] of positive degree.
Then there exists an extension field E of F such that f splits in E[t]
into a product of linear factors:

f(t) = l(f)

deg(f)∏
i=1

(t− xi) (xi ∈ E) .

Hence, all zeros of f are contained in E.

Proof We do this by induction over the degree n := deg(f) of
f . For n = 0 the polynomial f is constant and equals its leading
coefficient. In this case, the product over the monic linear factors is
empty. By induction hypothesis we assume that the theorem is true for
all polynomials of degree less than or equal to n. Let f(t) ∈ F [t] be a
polynomial of degree n+1. By 3.18 there exists an extension field E1 of
F in which f has a zero, say x1. In E1[t] the polynomial f(t) therefore
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splits into two factors: f(t) = (t − x1) g(t), with a polynomial g of
degree n and with l(f) = l(g). According to our induction assumption
there exists an extension field E of E1 so that g splits in E[t] into a
product of linear factors

g(t) = l(g)
n+1∏
i=2

(t− xi) (x2, ..., xn+1 ∈ E) ,

hence,

f(t) = l(f)
n+1∏
i=1

(t− xi) .

2

Example Let f(t) ∈ F [t] be monic. Then f splits in E[t] with
zeros xi ∈ E in the following way:

f(t) =
n∏

i=1

(t− xi)

= (t− x1) (t− x2) . . . (t− xn)

= tn − tn−1

n∑
i=1

xi + tn−2
∑
i<j

xi xj

+ . . .+ (−1)n−ktk
∑

1≤i1<i2<...<ik≤n

xi1 · . . . · xik

+ . . .+ (−1)n x1 · . . . · xn .

This will be used in the next section when we discuss elementary sym-
metric functions.

4. Symmetric Polynomials and the Fundamental Theorem
of Algebra

Definition 4.1. Let R be a unital commutative ring. A polynomial
f(t) ∈ R[t] (t = (t1, ..., tn)) is called symmetric if it satisfies f(t) =
f(tπ(1), ..., tπ(n)) for all π ∈ Sn. Special symmetric polynomials are

σ0(t) := 1

σj(t) :=
∑

1≤i1<i2<...<ij≤n

ti1 · . . . · tij (1 ≤ j ≤ n)

which are called elementary symmetric functions in t1, ..., tn. Here

we shortly wrote σj instead of the more precise σ
(n)
j .

Examples
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(1) Among the elementary symmetric functions

σ1(t) = t1 + . . .+ tn ,

σ2(t) = t1t2 + . . .+ t1tn + t2t3 + . . .+ t2tn + ...+ tn−1tn ,

σn(t) = t1 . . . tn

are used most frequently.

(2) Let f(t, t) ∈ R[t1, ..., tn, t] be monic of degree n with f(t, ti) =
0 (1 ≤ i ≤ n) and R be a factorial ring. Then we obtain

f(t, t) =
n∏

i=1

(t− ti)

=
n∑

j=0

(−1)n−j σn−j(t) t
j

=
n∑

i=0

(−1)i σi(t) t
n−i .

(3) Specializing the variables tl+1, ..., tn to zero we obtain symmetric
polynomials

σ
(l)
k (t1, . . . , tn) := σk(t1, . . . , tl, 0, . . . , 0) (1 ≤ k ≤ l) .

of the same degree. For k > l such a specialization yields zero.

Remark The symmetric polynomials form a subring ofR[t1, ..., tn].
The specialization

Φσ : R[t1, ..., tn]→ R[t1, ..., tn] : f 7→ f(σ1, ..., σn)

maps f onto a symmetric polynomial.

Theorem 4.2. (Principal theorem for elementary symmetric func-
tions) Let R be a factorial ring. Then every symmetric polynomial
f(t) ∈ R[t] can be written as g(σ1, ..., σn) for a uniquely determined
polynomial g(t) ∈ R[t].

Proof We introduce a weight w for monomials. For

g(t) = a tm1
1 · . . . · tmn

n = atm

we set w(tk) = k, w(g) :=
∑n

i=1 imi. Accordingly the weight of a
polynomial is defined as the maximum of the weights of the occuring
monomials. For

f(t) =
∑

ν∈(Z≥0)n

aνt
ν
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we set

w(f) = max {w(tν) | aν 6= 0} .

Hence, the weight of a polynomial w(f(t)) is exactly the degree of the
polynomial f(σ1, . . . , σn).

Proof of the existence of a polynomial g.
We show that for every symmetric polynomial f(t) ∈ R[t] of degree
d there exists a polynomial g(t) ∈ R[t] of weight w(g) ≤ d such that
f(t) = g(σ1, ..., σn). The proof is by induction on n.
For n = 1 we can put f = g because we have σ1 = t1 in this case.
Hence, we assume that we have shown the theorem for polynomials in
n−1 variables. To obtain the result also for polynomials in n variables
we apply induction on the degree d of f .
For d ≤ 0 the polynomial f is constant and g = f does the job. We
now assume that d > 0 and that the statement is true for polynomials
of degree less than d. Let f be an arbitrary polynomial of degree d.
Specializing tn 7→ 0 in f we obtain f (n−1)(t1, ..., tn−1) of degree at most
d. According to our induction hypothesis about the number of variables
there exists a polynomial g1(t1, ..., tn−1) ∈ R[t1, ..., tn−1] ⊆ R[t1, ..., tn]
of weight ≤ d with

f(t1, ..., tn−1, 0) = g1(σ
(n−1)
1 , ..., σ

(n−1)
n−1 )

(σ
(n−1)
i := σi(t1, ..., tn−1, 0)) .

We put h(t) := f(t)− g1(σ1, ..., σn−1). The polynomial h then is again
symmetric of degree ≤ d. We have h(t1, ..., tn−1, 0) = 0, the polynomial
h is therefore divisible by tn. h being symmetric it is then divisible by
all ti (1 ≤ i ≤ n). Hence, R[t] being a factorial ring, h is divisible by
σn. We therefore get h(t) = σnh1(t) with h1 again being symmetric.
We either have h1 = 0 or deg(h1) = deg(h) − n < d. According to
our induction assumption on d there exists g2 ∈ R[t1, ..., tn] of weight
≤ d− n with h1(t1, ..., tn) = g2(σ1, ..., σn). Putting things together we
obtain f(t) = g(σ1, ..., σn) for

g(σ1, ..., σn) = g1(σ1, ..., σn) + σn g2(σ1, ..., σn) .

Proof of uniqueness of g.
To prove uniqueness we show that for f(t) ∈ R[t] with f(σ1, ..., σn) = 0
we must have f = 0. The proof is by induction on the number n of
variables. For n = 1 the statement is trivial because of σ1 = t1. Now
we assume that uniqueness is guaranteed for polynomials of at most
n − 1 variables. We let 0 6= f(t) ∈ R[t] be a symmetric polynomial
in n variables and of minimal degree with f(σ1, ..., σn) = 0. We write
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f as a polynomial in tn: f(t1, ..., tn) =
∑k

i=0 fi(t1, ..., tn−1) t
i
n. The

coefficient f0(t1, ..., tn−1) cannot be zero. Otherwise the polynomial f
would be divisible by tn and therefore – as we saw above – by σn in
contradiction to our degree assumption. Specializing tn 7→ 0 we obtain
that f0 is symmetric in n− 1 variables with

0 = f(σ
(n−1)
1 , ..., σ(n−1)

n , 0) = f0(σ
(n−1)
1 , ..., σ

(n−1)
n−1 ) ,

again a contradiction to our induction assumption.
2

Example For f(t1, t2, t3) = (t1 − t2)2 (t1 − t3)2 (t2 − t3)2 we have

f(t1, t2, 0) = (t1 − t2)2 (t1t2)
2

= ((σ
(2)
1 )2 − 4σ

(2)
2 ) (σ

(2)
2 )2 ;

and consequently h(t) = σ3 h1(t) with

h1(t1, t2, 0) = 18σ
(2)
1 σ

(2)
2 − 4 (σ

(2)
1 )3

h2(t) = h1(t)− 18σ
(3)
1 σ

(3)
2 + 4σ

(3)
1

= −27 t1t2t3

= −27σ3 .

Putting things together we obtain

f(t1, t2, t3) = σ2
1 σ

2
2 − 4σ3

2 + σ3 (18σ1 σ2 − 4σ3
1 − 27σ3) .

Besides the elementary symmetric functions there is another set of
symmetric polynomials, the so–called power sums:

Sk := Sk(t) :=
n∑

i=0

tki (k ∈ Z≥0) .

Calculations with them are usually easier than with the σi. However,
a transfer from power sums to elementary symmetric functions is gen-
erally possible only in characteristic zero, as we will see below.

Theorem 4.3. The power sums Sk and the elementary symmetric
functions σj are connected via Newton’s relations:

(1)

k−1∑
i=0

(−1)i σi(t)Sk−i(t) + k (−1)k σk(t) = 0 (0 ≤ k ≤ n) ,
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(2)
n∑

i=0

(−1)i σi(t)Sk−i(t) = 0 (k ≥ n) .

Proof The polynomial

f(t1, ..., tn, t) :=
n∑

j=0

(−1)j σj(t) t
n−j =

n∏
j=1

(t− tj)

in n+ 1 variables t1, ..., tn, t satisfies

0 =
n∑

j=0

(−1)j σj(t) t
n−j
i (1 ≤ i ≤ n) ,

respectively,

0 =
n∑

j=0

(−1)j σj(t) t
k−j
i (1 ≤ i ≤ n, k ≥ n) .

Summing up these n equations yields
n∑

j=0

(−1)j σj(t)Sk−j(t) = 0 ,

hence 2., respectively 1. in case k = n. The remaining part of 1. will
now be proved for fixed k via induction on the number of variables n.
For the initial value n = k we have already proved it. Therefore we
assume that n > k and that the theorem is true for n − 1 variables.
We put

F (t1, ..., tn) :=
k−1∑
i=0

(−1)i σi(t)Sk−i(t) + (−1)k k σk(t) .

F is certainly a symmetric function of degree ≤ k and because of k < n
also less than n. By induction assumption we have F (t1, ..., tn−1, 0) = 0.
Hence, F (t) is divisible by tn – and since it is symmetric – also by σn(t).
Because of deg(F ) < n the polynomial F must therefore be 0.

2

Example We list the first few of Newton’s relations:

S1(t) = σ1(t),

S2(t) = σ1(t)S1(t)− 2σ2(t)

= σ2
1(t)− 2σ2(t),

S3(t) = σ1(t)S2(t)− σ2(t)S1(t) + 2σ3(t)

= σ3
1(t)− 3σ1(t)σ2(t) + 3σ3(t) .
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If the natural numbers are no zerodivisors in R then we can also express
the σk by the Sk over Q(R):

σ1(t) = S1(t),

σ2(t) =
1

2
(S1(t)

2 − S2(t)),

σ3(t) =
1

3

(
S2(t)− S1(t)

3 + 3S1(t)
1

2
(S1(t)

2 − S2(t))

)
=

1

6
(2S3(t) + S1(t)

3 − 3S1(t)S2(t)) .

Definition 4.4. The polynomial

d(f) := a2n−2
0

∏
1≤i<j≤n

(ti − tj)2

of R[t] is called discriminant of the polynomial

f(t) = a0

n∏
i=1

(t− ti) ∈ R[t][t] .

The exponent of a0 is chosen minimal such that d(f) belongs to R[t].
This will be shown in the next proposition.

Example A monic quadratic polynomial t2 +at+ b ∈ R[t] has the

zeros x1,2 = −a
2
±
√

a2−4b
4

. Its discriminant is therefore (x1 − x2)
2 =

a2 − 4b. We note that the sign of the discriminant decides whether
both zeros are real or complex. The discriminant vanishes if and only
if both zeros coincide.

Proposition 4.5. The discriminant of the polynomial

f(t) =
n∑

i=0

ait
n−i = a0

n∏
i=1

(t− xi)

satisfies

a0 d(f) = (−1)(
n
2 ) res(f, f ′) .

The discriminant d(f) is an element of R.

Proof The derivative of the given polynomial is

f ′(t) = a0

n∑
i=1

n∏
j=1
j 6=i

(t− xj) .



29

Hence, we obtain

f ′(xi) = a0

n∏
j=1
j 6=i

(xi − xj)

and can easily calculate the resultant of f and f ′:

res(f, f ′) = an−1
0

n∏
i=1

f ′(xi)

= an−1
0

n∏
i=1

a0

n∏
j=1
j 6=i

(xi − xj)


= a2n−1

0

n∏
i=1

(∏
j>i

(xi − xj)
∏
j<i

(−(xj − xi))

)
= a2n−1

0 (−1)
Pn

i=1(i−1)
∏

1≤i<j≤n

(xi − xj)
2

= (−1)(
n
2)a0 d(f) .

To prove the second statement we consider res( f
a0
, f ′

a0
) as determinant

of a (2n − 1) × (2n − 1) matrix. The first column of that matrix has
entries of {0, 1, n}. The remaining 2n − 2 columns contain – besides
zeros – entries of the form

ai

a0

(1 ≤ i ≤ n) or (n− i) ai

a0

(1 ≤ i < n) .

Hence, upon multiplication with a2n−2
0 that resultant belongs to the

ring R.
2

For readers familiar with matrices and determinants we give the
following proposition as an exercise.

Proposition 4.6. In R[t] the discriminant satisfies

d(f) = a2n−2
0 det ((Si+j−2(t)1≤i,j≤n) .

(Hint: The proof makes use of Vandermonde’s determinant.)

Theorem 4.7. (Fundamental Theorem of Algebra)
Every polynomial f(t) ∈ C[t] of positive degree n has a zero in C. This



30

is tantamount to the statement that f can be factored in C[t] into linear
factors:

f(t) = l(f)
n∏

j=1

(t− xj) (xj ∈ C) .

We also say that C is algebraically closed since all elements which
are algebraic over C already belong to C.

Proof

(1) In a first step the statement is reduced to polynomials with real
coefficients. For f(t) ∈ C[t] we form the product of f(t) and its

complex conjugate f(t) which is obtained from f by applying
complex conjugation to every coefficient. Since that product is
invariant under complex conjugation it must be contained in
R[t]:

g(t) := f(t)f(t) ∈ R[t] .

Assuming that the statement is true for polynomials in R[t] we
get

g(t) := |l(f)|2
2n∏

j=1

(t− cj) .

Because of the preceding remark with cj also cj is a zero of g(t).
We order the cj such that cn+j = cj (1 ≤ j ≤ n). This yields

f(t) = l(f)
n∏

j=1

(t− cj) (1 ≤ j ≤ n) .

(2) We need to show that every polynomial of positive degree in
R[t], say f(t) = tn + a1t

n−1 + . . . + an ∈ R[t], has a zero
in C. It is remarkable that all known proofs for this are not
purely algebraic inasmuch as they require some elements from
analysis, usually a form of the intermediate value theorem. The
intermediate value theorem tells us that a polynomial of R[t] of
odd degree – being interpreted as a continuous function from R
to R – has a zero in R. Hence, we can assume that deg(f) =
2kq with k ∈ N , q ∈ N odd. The proof for the latter is by
induction on k. For the initial value k = 0 we already saw this.
Hence, we assume that k > 0 and that the statement is true for
degrees of f divisible at most by 2k−1. According to 3.19 there
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is an extension field K of R over which f(t) decomposes into a
product of linear factors:

f(t) = l(f)
n∏

j=1

(t− xj) .

Following an idea of Laplace we consider the polynomials

Lr(t) :=
∏

1≤µ<ν≤n

(t− xµ − xν − r xµxν) ∈ K[t] (r ∈ R) .

We note that the coefficients of Lr(t) are symmetric functions
in the zeros xj. Hence, the coefficients of Lr can be written
as polynomials in the elementary symmetric functions σj(x) =
(−1)jaj implying Lr(t) ∈ R[t]. Then

deg(Lr) =
n

2
(n− 1) = 2k−1q (2kq − 1) = 2k−1q̃ ,

q̃ is odd, and Lr has a zero zr in C for every r ∈ R according to
our induction assumption. For every r ∈ R there exist indices
µ, ν with

zr := xµ + xν + r xµxν ∈ C .

Since the number of pairs of indices µ, ν is finite, the number
of parameters r ∈ R is infinite there must exist r 6= r̃ in R , 1 ≤
µ < ν ≤ n with

xµ + xν + r xµxν , xµ + xν + r̃ xµxν ∈ C .

This has the consequences xµxν ∈ C , xµ + xν ∈ C, i.e. xµ, xν

are zeros of

t2 − (xµ + xν) t+ xµxν ∈ C[t] ,

and therefore also xµ, xν belong to C. Here we use that square
roots of complex numbers again belong to C. Hence, f(t) has
at least 2 zeros in C.

2

Corollary 4.8. Every polynomial f(t) ∈ R[t] of positive degree can be
decomposed as

f(t) = l(f)
k∏

i=1

(t− ci)
l∏

j=1

qj(t)

with ci ∈ R, qj(t) = t2 + ujt + vj ∈ R[t] irreducible (1 ≤ j ≤ l)). This
presentation is unique up to the order of the factors.
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Proof We let c1, ..., ck denote all real zeros of f(t). Then we obtain

f(t) = l(f)
k∏

i=1

(t− ci) g(t) ,

where the polynomial g(t) ∈ R[t] is uniquely determined. Then for
every zero x ∈ C of g(t) also x is a zero. We therefore order the zeros

of g appropriately to obtain g(t) =
∏l

j=1(t− zj)(t− zj). Then we put

qj(t) = t2 − (zj + zj) t+ zjzj ∈ R[t] (1 ≤ j ≤ l) .

The uniqueness of that presentation – up to the order of the factors
– is a consequence of R[t] being a factorial ring..

2

Corollary 4.9. The irreducible elements of C[t] are the polynomials
of degree one. The irreducible elements of R[t] are the polynomials
of degree one and those polynomials t2 + ut + v of degree two with
u2 − 4v < 0.

The next theorem is an appendix for readers already familiar with
vector spaces.

Theorem 4.10. Let Λ be a unital entire commutative overring of R in
which every element is algebraic over R. Then Λ is isomorphic either
to R or to C.

Proof Let us assume that Λ 6= R. For x ∈ Λ \ R we obtain a 2–
dimensional R–vectorspace V := R1+Rx. Also there exists f(t) ∈ R[t]
of positive degree with f(x) = 0. Because of the fundamental theorem
the minimal polynomial of x ∈ Λ \ R is necessarily of degree 2, say

g(t) = t2 + ut+ v ∈ R[t] (u2 − 4v < 0) .

This implies x2 = −ux − v in Λ. Therefore we can introduce a multi-
plication in V via

(a+ bx) (c+ dx) := ac+ (ad+ bc)x+ (−ux− v) bd
= (ac− vbd) + (ad+ bc− ubd)x .

Thus V becomes a commutative unital entire overring of R with a
2–element basis. We show that V is isomorphic to C via

a+ bx 7→ a+
b

2
(−u+ iD) for D =

√
4v − u2 .
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That mapping is a priori surjective and injective and also additive. Its
multiplicativity follows from the diagram

(a + bx) (c + dx) 7→
`
a + b

2 (−u + iD)
´ `

c + d
2 (−u + iD)

´
‖ ‖

(ac− bdv) + x (bc + ad− ubd) ac + ( ad
2 + bc

2 )(−u + iD) + bd
4 (u2 − 2uDi−D2)

↓ ‖
ac− bdv + (bc + ad− ubd) 1

2 (−u + iD) ac− u
2 (ad + bc− bdu)− bdv + i

2 D (ad + bc− bdu)

We still need to prove that Λ = V . For this we let y ∈ Λ\R arbitrary,
f(t) ∈ R[t] with f(y) = 0. Making use of V ∼= C we conclude that f
decomposes into linear factors t − λ (λ ∈ V ), so we get y = λ for a
suitable choice of λ.

2

Remark The last theorem shows that any R–vectorspace V of
dimension r cannot be a field for r > 2.

5. Multivariate Polynomials and Gröbner Bases

To make the presentation easier we assume in this paragraph that all
polynomials have coefficients in a base field F . We emphasize, however,
that all concepts which we develop can be generalized to polynomials
with coefficients in a Noetherian ring R. In any case, every ideal in the
ring of polynomials is finitely generated. The goal of this section is to
develop an algorithm for the computation of special sets of generators
for arbitrary ideals, so-called Gröbner bases. They have turned out to
be one of the strongest tools in computer algebra. For example, using
Gröbner bases it is easy to decide whether a polynomial belongs to a
given ideal. Another application is to the solution of non linear systems
of algebraic equations.

We recall several notations about multivariate polynomials. Usually,
we will consider polynomials in n variables, i.e. from F [t1, ..., tn] which
we abbreviate by F [t]. Any polynomial f(t) is a finite sum of mono-
mials m(t) = a

∏n
i=1 t

mi
i =: amtm. The sum m1 + ...+mn is called the

degree of the monomial m(t). If the coefficient a ∈ F of m(t) is one
the monomial is called monic. We note that the least common multi-
ple lcm and the greatest common divisor gcd of two monic monomials
m(t), k(t) are given by

lcm(m, k) =
n∏

i=1

t
max(mi,ki)
i , gcd(m, k) =

n∏
i=1

t
min(mi,ki)
i .

Analogously to the case of univariate polynomials we would like to
put the monomials of a polynomial into a specific order. Of course,
we can do this with respect to their degrees, but in case n > 1 there
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exist monic monomials of the same degree which do not coincide. For
example, we must decide whether t21t2 or t1t

2
2 should come first.

This means to introduce a total ordering on the set S of all monic
monomials. Clearly, once the variables have been fixed we can iden-
tify each monic monomial with its vector m = (m1, ...,mn) of expo-
nents. This establishes a monoid isomorphism between the multiplica-
tive monoid S and the additive monoid (Z≥0)n. The ordering to be cho-
sen should be compatible with the law of composition of the monoid,
i.e. we require that for elements α, β, γ of the monoid the ordering
α > β implies αγ > βγ. Also the property that every non-zero subset
of the monoid contains a minimal element will be useful. This element
is then unique since we requested a total ordering.

In practice, the following orderings on S have turned out to be of
special interest.

(1) Lexicographical Ordering >lex

For elements of (Z≥0)n we say that m = (m1, ...,mn) is bigger
than k = (k1, ...kn) if there is a smallest index, say i, such that
mj = kj for 1 ≤ j < i and mi > ki.
For example, we have (1, 2, 0) >lex (0, 3, 4) and (3, 2, 4) >lex

(3, 2, 1).
(2) Inverse Lexicographical Ordering >ilex

For elements of (Z≥0)n we say that m = (m1, ...,mn) is bigger
than k = (k1, ...kn) if there is a largest index, say i, such that
mj = kj for i < j ≤ n and mi > ki.
For example, we have (4, 7, 4) >ilex (4, 2, 3) and (5, 1, 3) >ilex

(4, 1, 3).
(3) Graded Lexicographical Ordering >glex

For elements of (Z≥0)n we say that m = (m1, ...,mn) is bigger
than k = (k1, ...kn) if either m1 + ... + mn > k1 + ... + kn or
m1 + ... + mn = k1 + ... + kn and m >lex k. For example, we
have (1, 2, 3) >glex (3, 2, 0) and (1, 2, 4) >glex (1, 1, 5).

(4) Graded Inverse Lexicographical Ordering >gilex

For elements of (Z≥0)n we say that m = (m1, ...,mn) is bigger
than k = (k1, ...kn) if either m1 + ... + mn > k1 + ... + kn or
m1 + ...+mn = k1 + ...+ kn and m >ilex k.
For example, we have (4, 7, 1) >gilex (4, 2, 3) and (1, 4, 3) >gilex

(4, 1, 3).

It is straightforward that all three orderings are total orderings of
(Z≥0)n. Also the compatibility of these orderings with addition is im-
mediate. We leave it as an exercise to the reader to show that every
non-empty subset of (Z≥0)n has a minimal element. We note that



35

the inverse lexicographical ordering is used to look at the elements of
F [t] as polynomials in the variable tn with coefficients in F [t1, ..., tn−1]
(recursive representation).

Since every polynomial f is a finite sum of monomials any (total)
ordering of the monomials can be used to introduce a (partial) ordering
of the polynomials. Especially, we can define the leading monomial
(leading term) lt(f) as the largest monomial amtm occuring in the
presentation of f . We denote the corresponding monic part tm by
mlt(f) (monic leading term) and the coefficient am by lc(f) (leading
coefficient) of f . The partial ordering on F [t] is then obtained via

f > g ⇔ mlt(f) > mlt(g) .

With these prerequisites at hand we turn our interest to computa-
tions in a polynomial ideal I. We assume that it is given by a finite
number of generators, say f1, ..., fk. Then every element g of I can be
written as

g =
k∑

i=1

rifi (ri ∈ F [t]) .

We are interested in elements of small degree of I since they will play
a decisive role for Gröbner bases. In case ri is not constant the degree
of rifi is larger then the degree of fi. We can therefore expect g to
be of small degree only if the sum of the leading monomials of several
summands in the presentation of g is zero. If we just consider two poly-
nomials instead of k this phenomenon can be enforced in the following
way.

Definition 5.1. For two polynomials f, g ∈ F [t] we define their S-
polynomial S(f, g) as

S(f, g) :=
lcm(mlt(f),mlt(g))

lt(f)
f − lcm(mlt(f),mlt(g))

lt(g)
g .

Hence, the leading term of the S-polynomial S(f, g) is smaller than
the least common multiple of the leading terms of f and g. This prop-
erty will be of importance in a characterization of Gröbner bases in
5.5.

Examples
1. We calculate the S-polynomial of f = t31t

2
2−t21t32+t1 and g = 3t41t2+t

2
2



36

in Q[t] with respect to >glex.

S(t31t
2
2 − t21t32 + t1, 3t

4
1t2 + t22) =

t41t
2
2

t31t
2
2

f − t41t
2
2

3t41t2
g

= t1f −
1

3
t2g

= −t31t32 + t21 −
1

3
t32

This computation remains valid for >lex.
2. For the polynomials f = t21 − t2 and g = t31 − t3 of Q[t] we compute
their S-polynomial for two different orderings.
(a) t1 > t2 > t3 (lexicographic ordering)

S(f, g) = t1f − g = −t1t2 + t3 .

(b) t2 > t3 > t1

S(f, g) = t3f − t2g = −t2t31 + t21t3 .

The following lemma will also be used in characterizing Gröbner
bases in 5.5.

Lemma 5.2. Let f, f1, ..., fs ∈ F [t] and f =
∑s

i=1 cifi (ci ∈ F ) with
δ = mlt(f1) = ... = mlt(fs) 6= mlt(f). Then f is also an F -linear
combination of the S(fi, fi+1) (1 ≤ i < s).

Proof Since the monic leading terms of all fi coincide the monic
leading term of

∑s
i=1 cifi either equals δ or it is smaller. According to

our assumption δ 6= mlt(f) we must therefore have
∑s

i=1 ci lt(fi) = 0.
We let lt(fi) = aiδ (ai ∈ F×) and set bi := aici, pi := fi/ lc(fi) for
(1 ≤ i ≤ s) and obtain

s∑
i=1

bi = 0 ,

S(fi, fj) =
δ

aiδ
fi −

δ

ajδ
fj =

fi

ai

− fj

aj

= S(pi, pj)
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and eventually

s∑
i=1

cifi =
s∑

i=1

bi(fi/ lc(fi))

= b1(p1 − p2) + (b1 + b2)(p2 − p3) + ...+

(b1 + ...+ bs−1)(ps−1 − ps) + (b1 + ...+ bs)ps

=
s−1∑
i=1

(
i∑

j=1

bj)S(fi, fi+1) .

2

We note that we have mlt(S(fi, fj)) < δ in the preceding lemma.

If the leading term of a non-zero polynomial g divides the leading
term of a polynomial f (lt(g) | lt(f)), i.e. there exists a monomial
h with lt(f) = h lt(g)) then we can subtract hg from f so that this
divisibility property is no longer satisfied for the polynomials f−hg and
g. We note that f −hg = S(f, g). This remains valid even without the
divisibility condition if we set h = 0 in case lt(g) does not divide lt(f).
Repeatedly replacing f by S(f, g) in case lt(g) divides lt(f) until this
divisibility condition does not hold anymore we say that the polynomial
f is reduced modulo g. This concept can be easily generalized to the
reduction of a polynomial modulo a non-empty finite set of non-zero
polynomials.

Definition 5.3. Let I be a non-zero ideal of F [t1, ..., tn] with ordered
basis G = {g1, ..., gk}. We say that an element f ∈ F [t1, ..., tn] reduces
to zero modulo G if the sequence f0 = f ,

fi = reduction of fi−1 modulo gi (1 ≤ i ≤ k)

satisfies fk = 0.

We remark that a polynomial which reduces to 0 modulo G neces-
sarily belongs to the ideal I. However, not every element of an ideal
must have this property.

Example Let f = t1t
2
2 − t1 and G = {g1, g2} with g1 = t1t2 +

1, g2 = t22 − 1. Then we obtain f1 = f − t2(t1t2 + 1) = −t1 − t2 = f2,
and f does not reduce to 0 modulo {g1, g2}. If we change the order of
the basis elements, however, we compute f1 = f − t1(t22 − 1) = 0 and
f does reduce to 0 modulo that newly ordered basis. The reason for
this phenomenon is that the basis {g1, g2} is not a Gröbner basis (see
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definition and theorem below). It does not contain the S-polynomial

S(g1, g2) =
t1t

2
2

t1t2
(t1t2 + 1)− t1t

2
2

t22
(t22 − 1) = t1 + t2 .

If we add g3 := t1 + t2 to the basis we get G = {g1, g2, g3} and, clearly,
f reduces to 0 modulo G. We note that the same holds for the S-
polynomials S(g1, g3), S(g2, g3).

Definition 5.4. Let I be a non-zero ideal of F [t1, ..., tn] with basis G.
If every f ∈ I reduces to zero modulo G then G is called a Gröbner
basis of I.

We remark that Gröbner bases are by no means unique since every
superset of a Gröbner basis also satisfies the condition of the definition.

Theorem 5.5. Let I be a non-zero ideal of F [t1, ..., tn] with basis G =
{g1, ..., gs}. Then G is a Gröbner basis for I if and only if every S-
polynomial S(gi, gj) (1 ≤ i < j ≤ s) reduces to 0 modulo G.

Proof If G is a Gröbner basis of I then every polynomial of I,
hence a priori every S(gi, gj), reduces to 0 modulo G.

Now let us assume that every S-polynomial S(gi, gj) reduces to 0
modulo G but that there exists f ∈ I which does not. Obviously, f is
not zero. If 0 6= f cannot be reduced modulo G anymore then in the
basis representation

f =
s∑

i=1

higi (hi ∈ F [t1, ..., tn]) (1)

the leading monomial of f is not divisible by any of the leading mono-
mials of the gi. We assume that (1) is a presentation of f in which the
monic part of the largest occuring monomial on the right-hand side is as
small as possible, say δ. We observe that mlt(f) 6= δ. Then we rewrite
(1) by separating those summands with monic leading monomial δ
from the other terms. We put J1 := {i | 1 ≤ i ≤ s, mlt(higi) = δ} and
J2 := {1, ..., s} \ J1 and obtain

f =
∑
i∈J1

higi +
∑
i∈J2

higi (2)

=
∑
i∈J1

lt(hi)gi +
∑
i∈J1

(hi − lt(hi))gi +
∑
i∈J2

higi (3)

so that the leading monomials of the summands in the two last sums
are smaller than δ. Because of mlt(f) 6= δ the first sum satisfies the
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prerequisites of the preceding lemma for the polynomial

f −

(∑
i∈J1

(hi − lt(hi))gi +
∑
i∈J2

higi

)
if we put fi = mlt(hi)gi and ci = lc(hi). For i, j ∈ J1 we set gij :=
lcm(mlt(gi),mlt(gj)) and observe that gij > mlt(S(gi, gj)). Hence, the
first sum of (3) becomes an F -linear combination of S-polynomials of
the form

S(mlt(hi)gi,mlt(hj)gj) =
δmlt(hi)gi

mlt(hi) lt(gi)
− δmlt(hj)gj

mlt(hj) lt(gj)

=
δ

lt(gi)
gi −

δ

lt(gj)
gj

=
δ

gij

S(gi, gj) .

Since the S-polynomials S(gi, gj) reduce to zero modulo G they have
a basis presentation

S(gi, gj) =
s∑

ν=1

hνgν

with mlt(hνgν) ≤ mlt(S(gi, gj)). Because of mlt( δ
gij
S(gi, gj)) < δ in-

serting those presentations into (3) yields a presentation of f by G
in which all occuring monomials are smaller than δ contradicting our
assumption.

2

The following algorithm (Buchberger’s algorithm) constructs a Gröbner
basis from an arbitrary ideal basis.

Buchberger Algorithm

Input A basis G = {g1, ..., gs} of an ideal I.
Output A Gröbner basis G = {g1, ..., gt} of I.
Initialization Set t := s, B := {(i, j) | 1 ≤ i < j ≤ t}.
Step If B 6= ∅ choose (i, j) from B and remove (i, j) from B; reduce
S(gi, gj) modulo G to f ; if f 6= 0 add gt+1 := f to G and {(i, t + 1) |
1 ≤ i ≤ t} to B and increase t by 1.

We still need to show that Buchberger’s algorithm terminates. For
this we consider the sequence of ideals Is := 〈mlt(gi) | 1 ≤ i ≤ s〉. We
show that every enlargement of G (increase of s) yields a strictly larger
ideal Is. Since any ascending chain of ideals becomes stationary s is
bounded.
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Let us therefore assume that f is an S-polynomial of two elements
of G which is already reduced modulo G but is still non-zero. Hence,
f will be inserted into G thus increasing ]G. We will show that mlt(f)
is not contained in Is. Namely, if mlt(f) belongs to Is there exists a
presentation

mlt(f) =
s∑

i=1

hi mlt(gi)

with polynomials hi ∈ F [t]. Comparing monomials on both sides we
get a non-empty subset J1 of {1, 2, ..., s} and monomials ait

mi which
are summands of hi such that

mlt(f) =
∑
i∈J1

ait
mi mlt(gi) .

But then mlt(f) is a multiple of mlt(gi) for i ∈ J1 and f can be further
reduced modulo gi contradicting our assumption.

We remark that the previous considerations also show that every
monomial which is contained in an ideal with a basis of monomials is a
linear combination of monomials each summand being divisible by one
of the basis elements.

6. Multivariate Polynomials – Resultants

Besides Gröbner bases there is another important tool for eliminating
variables in a system of polynomial equations: resultants. We intro-
duce them in a generic way, i.e. we assume that their coefficients are
algebraically independent over Z. Let R = Z[a0, ..., an, b0, ..., bm] be a
polynomial ring in n+m+ 2 variables. Then the polynomials

A(t) = a0t
n + a1t

n−1 + ...+ an−1t+ an and

B(t) = b0t
m + b1t

m−1 + ...+ bm−1t+ bm (4)

of R[t] are said to be generic inasmuch as any two polynomials f, g
over a unital commutative ring Λ with deg(f) ≤ n, deg(g) ≤ m can be
obtained as homomorphic images of A,B by mapping

1Z 7→ 1Λ, t 7→ t, ai 7→ αi ∈ Λ, bj 7→ βj ∈ Λ (0 ≤ i ≤ n, 0 ≤ j ≤ m)

for suitable elements αi, βj of Λ. If S denotes a common splitting ring
of A,B over R we obtain

A(t) = a0

n∏
i=1

(t− xi), B(t) = b0

m∏
j=1

(t− yj) (5)



41

in S[t]. From this we conclude

ai

a0

= (−1)i
∑

1≤j1<...<ji≤n

xj1 ...xji
=: (−1)iσi (1 ≤ i ≤ n) (6)

with the σi being symmetric functions in the zeros of A (so-called ele-
mentary symmetric functions ). Analogously, we get

bi
b0

= (−1)i
∑

1≤j1<...<ji≤m

yj1 ...yji
(1 ≤ i ≤ m) . (7)

It follows that Z[a0, ..., an, b0, ..., bm] ⊆ Z[a0, x1, ..., xn, b0, y1, ..., ym] and
therefore also a0, x1, ..., xn, b0, y1, ..., ym are algebraically independent.

From the theorem of Gauß we know thatR[t] is a unique factorization
domain. Hence, the greatest common divisor of A,B is well defined.
Any common zero of A,B is also a zero of gcd(A,B) and vice versa.
Whereas the zeros of A,B usually do not belong to R, the greatest
common divisor gcd(A,B) is calculated in R[t]. Hence, the existence
of common zeros can be decided without the need of constructing ring
extensions of R.

Lemma 6.1. The greatest common divisor of A,B ∈ R[t] given in
(4) is different from 1, if and only if there exist non-zero polynomials
U, V ∈ R[t] satisfying deg(U) < m, deg(V ) < n and UA = V B.

Proof If C := gcd(A,B) is different from 1 we write A = CÃ, B =
CB̃ with deg(Ã) < n, deg(B̃) < m and obtain

CÃB̃ = B̃A = ÃB

so that we can choose U = B̃, V = Ã.
If U, V with the properties of the lemma exist we consider the factor-

izations of UA and of V B into prime polynomials. Clearly, not every
prime polynomial dividing A can divide V because of deg(V ) < deg(A).
Therefore at least one such prime polynomial must divide B and con-
sequently gcd(A,B).

2

Setting

U(t) =
m−1∑
i=0

uit
m−1−i , V (t) =

n−1∑
j=0

vjt
n−1−j ∈ R[t] (8)

the equation UA = V B yields a linear system of equations for the
coefficients ui, vj. For the coefficent of tµ (0 ≤ µ ≤ m + n − 1) we
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obtain ∑
max{0,µ−n}≤ν≤min{µ,m−1}

uνaµ−ν =
∑

max{0,µ−m}≤ν≤min{µ,n−1}

vνbµ−ν .

These are (m+ n) equations. Moving everything to the left-hand side
we get a homogenous linear system of equations

(u0, ..., um−1,−v0, ...,−vn−1)



a0 ... an

a0 ... an

...

...
a0 a1 ... an

b0 b1 . . . bm

b0 b1 . . . bm

...
b0 b1 ... bm


= 0

(9)

We denote the formidable coefficient matrix by ∆. We recall that
A,B have a common zero if and only if that homogenous system has a
non-trivial solution. Of course, the latter holds exactly for det(∆) = 0.

Definition 6.2. The determinant of the coefficient matrix ∆ of (9) is
called resultant of A and B. It is denoted by res(A,B).

Next we show that res(A,B) is in the ideal of R[t] generated by A
and B. This is of importance when we use resultants for eliminating
variables from multivariate polynomials. Looking at the structure of
∆ we immediately find the following identity:

v :=



tm−1A
tm−2A

.

.
t0A

tn−1B
.
.

t0B


= ∆



tn+m−1

tn+m−2

.

.
tn

tn−1

.

.
t0


. (10)

Denoting the columns of ∆ by d1, ...,dn+m this is tantamount to

v =
n+m∑
κ=1

tn+m−κdκ .

Then Cramer’s rule tells us that

res(A,B) = det(∆)t0 = det(d1, ...,dm+n−1,v) .



43

Calculating the last determinant we note that the variable t only occurs
in the last column v so that we indeed obtain polynomials φ, ψ ∈ R[t]
with deg(φ) < m, deg(ψ) < n and

φA + ψB = res(A,B) . (11)

We note that in the first m rows of ∆ we have entries zero or coeffi-
cients of A and in the last n rows the entries are zero or coefficients of
B. According to Laplace’s theorem we have

res(A,B) =
∑

π∈Sm+n

sign(π)∆(1, π(1))...∆(m+ n, π(m+ n))
(12)

if ∆(i, j) denotes the entry of ∆ in row i and column j. Therefore
any non-zero summand of the sum in (12) must consist of m factors
aµ (from the first m rows) and n factors bν (from the last n rows). We
conclude that res(A,B) is a homogenous polynomial of degree m in the
aµ and of degree n in the bν . We can write it in the form

res(A,B) = am
0 b

n
0F (

a1

a0

, ...,
an

a0

,
b1
b0
, ...,

bm
b0

) .

According to our remark on the elementary symmetric functions of the
zeros of A, respectively B, we know that F can also be written as a
polynomial in the variables x1, ..., xn, y1, ..., ym which we again denote
by F . Since the resultant vanishes if zeros of A and B coincide and
since Z[a0, x1, ..., xn, b0, y1, ..., ym] is a factorial ring the polynomial F
must be divisible by the polynomials xi − yj (1 ≤ i ≤ n, 1 ≤ j ≤ m)
and therefore by the polynomial

F̃ :=
n∏

i=1

m∏
j=1

(xi − yj) .

Lemma 6.3. The resultant res(A,B) of the generic polynomials A,B
of (4) coincides with each of the three polynomials

(1) am
0 b

n
0 F̃ ,

(2) am
0

∏n
i=1B(xi),

(3) (−1)mnbn0
∏m

j=1A(yj).

Proof The equality of the polynomials in the lemma is immediate
from (5) :

am
0 b

n
0 F̃ = am

0

n∏
i=1

(
b0

m∏
j=1

(xi − yj)

)
= (−1)mnbn0

m∏
j=1

(
a0

n∏
i=1

(yj − xi)

)
.

We also know that am
0 b

n
0 F̃ divides res(A,B). From 6.3(2.) we conclude

that am
0 b

n
0 F̃ is homogenous of degree n in the bν and from (3.) that
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it is homogenous of degree m in the aµ. Since res(A,B) has the same

properties the quotient of res(A,B) and am
0 b

n
0 F̃ must be constant. The

constant will be determined by comparing the coefficients of am
0 b

n
m. In

det(∆) we obtain that monomial as the product of all diagonal elements
of ∆, it has coefficient 1. But looking at its coefficient in am

0 b
n
0 F̃ we

find from 6.3(2.) that it is 1, too.
2

We list a few direct consequences of the last lemma which will be of
help in the actual computation of resultants:

res(A,B) = (−1)mnres(B,A) , (13)

res(rA,B) = rmres(A,B) ,

res(A, rB) = rnres(A,B) (r ∈ R) .

If one or even both polynomials involved are constant we get

res(a0, B) = am
0 ,

res(A, b0) = bn0 , (14)

res(a0, b0) = 1 .

Hence, we will try to evaluate res(A,B) by pseudo-division. In case
deg(B) > deg(A) we compute res(A,B) = (−1)mnres(B,A). Hence,
we may assume that deg(A) ≥ deg(B). Applying pseudo-division we
get polynomials Q = Q(A,B), R = R(A,B) ∈ R[t], deg(R) < deg(B)
satisfying

bn−m+1
0 A = QB + R . (15)

Then the last lemma yields

res(A,B) = (−1)mnbn0

m∏
j=1

A(yj)

= (−1)mnb
n−m(n−m+1)
0

m∏
j=1

(QB +R)(yj)

= (−1)mnb
n−deg(R)−m(n−m+1)
0

(
b
deg(R)
0

m∏
j=1

R(yj)

)
= (−1)m(n−deg(R))b

n−deg(R)−m(n−m+1)
0 res(R,B)

= (−1)mnb
n−deg(R)−m(n−m+1)
0 res(B,R) . (16)

We note that the exponent of b0 is likely to become negative so that
these calculations can only be carried out in the quotient field of R.
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However, since the resultant itself is an element of R we are guaranteed
that the final result will not contain denominators.

In the actual calculation of the resultant of two polynomials we suc-
cessively replace the polynomial of larger degree via pseudodivision by
a polynomial whose degree is less than the original lower degree. In
this way we eventually obtain a constant remainder polynomial. If that
constant is zero, the original resultant is zero, too. Otherwise the last
resultant is evaluated by (14). This leads to the following algorithm.

Algorithm for computing resultants

Input A,B ∈ R[t] with deg(A) ≥ deg(B) > 0.
Output res(A,B) ∈ R and polynomials φ, ψ ∈ R[t] satisfying φA +
ψB = res(A,B).
Step 1 (Initialization) Set res(A,B) ← 1, F ← A, G ← B, N ←
deg(A), M ← deg(B), φ0 ← 1, ψ1 ← 1, φ1 ← 0, ψ0 ← 0.
Step 2 (Pseudo-division) Set b0 ← lc(G) and calculate with (15) poly-

nomials Q =
∑N−M

i=0 qit
N−M−i, R ∈ R[t]. We set s← N − deg(R) and

res(A,B)← res(A,B)(bN−M+1
0 )−Mbs0(−1)MN and also φ2 ← bN−M+1

0 φ0−
Qφ1, ψ2 ← bN−M+1

0 ψ0 −Qψ1. If R is constant go to 4., else to 3..
Step 3. (Interchange of F,G) Set F ← G, G ← R, N ← M, M ←
deg(R) as well as φ0 ← φ1, φ1 ← φ2, ψ0 ← ψ1, ψ1 ← ψ2 and go to 2..
Step 4. (Termination) For R = 0 set res(A,B) = 0 and φ← φ2, ψ ←
ψ2; for R 6= 0 set T ← res(A,B)RM−1 and res(A,B) ← TR, φ ←
φ2T, ψ ← ψ2T . Then terminate.

Remarks

(1) The polynomials φ, ψ of 11 satisfy deg(φ) ≤ deg(B)−1, deg(ψ) ≤
deg(A) − 1. The example A = t2 + 1, B = t2 + 4 shows that
equality need not hold:

9 = res(A,B) = −3(t2 + 1) + 3(t2 + 4) .

(2) Instead of operating in the quotient field of R we can keep
track of the multipliers b0 and their exponents in each step
separately and calculate their product only at the end knowing
that res(A,B) belongs to R.

Example We want to compute res(t3 + 1, 2t2 − 2) in Z[t]. In the
steps of the algorithm the following data are produced:
1. F = t3 + 1, N = 3, G = 2t2 − 2, M = 2.
2. 22(t3 + 1) = 2t(2t2 − 2) + 4t+ 4, hence Q = 2t, R = 4t+ 4 yielding
s = 2, res(A,B) = (22)−222 = 2−2.
3. F = 2t2 − 2, N = 2, G = 4t+ 4, M = 1.



46

2. 42(2t2 − 2) = (8t− 8)(4t+ 4) + 0, hence Q = 8t− 8, R = 0 yielding
s = 2, res(A,B) = 2−2(42)−142 = 2−2.
4. res(A,B) = 0, φ = 32(−t+ 1), ψ = 16(t2 − t+ 1).


