TECHNISCHE UNIVERSITÄT BERLIN

SS11

Fakultät II – Institut für Mathematik

Dozent: Tobias Finis

Assistent: Gerriet Möhlmann

www.math.tu-berlin.de/~kant/algebra1ss11

11. Übung Algebra I

1. Aufgabe

Sei $f:R\to S$ ein Ringepimorphismus der Ringe R und S und seien I und J Ideale von S. Zeigt die folgenden Aussagen:

(a) I + J ist ein Ideal von S.

(b)
$$f^{-1}(I+j) = f^{-1}(I) + f^{-1}(J)$$
.

Gebt ein Beispiel für einen Ringhomomorphismus an, der diese Eigenschaft nicht besitzt.

(7 Punkte)

2. Aufgabe

Es sei $M(u,v):=\begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix}$ und $Q=\{M(u,v)\mid u,v\in\mathbb{C}\}$ der Schiefkörper der Quaternionen. Wir definieren

$$I:=\begin{pmatrix}i&0\\0&-i\end{pmatrix},\quad J:=\begin{pmatrix}0&1\\-1&0\end{pmatrix},\quad K:=IJ=\begin{pmatrix}0&i\\i&0\end{pmatrix},\quad \text{ und } 1_Q:=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$$

- (a) Zeigt, dass sich jedes Element $A \in Q$ in der Form A = M(u, 0) + M(v, 0)J darstellen lässt.
- (b) Zeigt, dass sich jedes Element $A \in Q$ durch eine \mathbb{R} -Linearkombination von $1_Q, I, J$ und K darstellen lässt.
- (c) Stellt das Produkt von $x:=\xi_o 1_Q+\xi_1 I+\xi_2 J+\xi_3 K$ und $y:=\eta_o 1_Q+\eta_1 I+\eta_3 J+\eta_4 K$ wieder als $\mathbb R$ -Linearkombination von $1_Q,I,J$ und K dar.
- (d) Zeigt, dass in Q die Gleichung $x^2 + 1 = 0$ unendlich viele Lösungen hat.

(6 Punkte)

3. Aufgabe

Sei $R:=\mathbb{Z}[\sqrt{-5}]=\{a+b\sqrt{-5}\}$. Wie wissen, dass wir jedes Element α von R eindeutig als $\alpha=a+b\sqrt{-5}$ schreiben können mit $a,b\in\mathbb{Z}$. Definiere

$$N: R \longrightarrow \mathbb{Z}$$
. $a + b\sqrt{-5} \longmapsto a^2 + 5b^2$.

Man nennt N die Normfunktion von R. Zeigt:

(a) N ist multiplikativ, also ein Homomorphismus zwischen den Monoiden (R, \cdot) und (\mathbb{Z}, \cdot) .

- (b) $R^{\times} = \{1, -1\}.$
- (c) Die Elemente $(4+\sqrt{-5}), \ (4-\sqrt{-5}), \ (1+2\sqrt{-5})$ und $(1-2\sqrt{-5})$ sind irreduzibel, aber nicht prim.

(7 Punkte)