TECHNISCHE UNIVERSITÄT BERLIN

SS11

Fakultät II – Institut für Mathematik

Dozent: Tobias Finis

Assistent: Gerriet Möhlmann

www.math.tu-berlin.de/~kant/algebra1ss11

2. Übung Algebra I

1. Aufgabe

Sei $\phi: G \longrightarrow H$ ein Gruppenhomomorphismus und sei $N \unlhd H$ ein Normalteiler. Zeigt, dass dann auch $\phi^{-1}(N)$ ein Normalteiler von G ist.

(4 Punkte)

2. Aufgabe

Sei G eine endliche Gruppe mit einer geraden Anzahl von Elementen. Zeigt, dass die Anzahl der Elemente der Ordnung zwei ungerade ist.

(4 Punkte)

3. Aufgabe

Sei G eine Gruppe und $U, V \leq G$. Beweist oder widerlegt durch ein Gegenbeispiel folgende Aussagen:

- (i) Aus $U, V \subseteq G$ folgt $UV \subseteq G$.
- (ii) Ist $U \subseteq V$ und $V \subseteq G$, so gilt auch $U \subseteq G$. Hinweis: Vielleicht ist die A_4 nützlich
- (iii) Ist G endlich und jede Untergruppe $V \leq G$ mit $V \subsetneq G$ zyklisch, so ist G zyklisch.

(6 Punkte)

4. Aufgabe

Sei G ein Gruppe. Zeige folgende Aussagen:

- (i) Besteht die Gruppe der Automorphismen von G nur aus der Identität, d.h. gilt $Aut(G) = \{id\}$, so ist G abelsch.
- (ii) Ist die Abbildung $\phi: G \longrightarrow G$, $x \longmapsto x^2$ ein Homomorpishmus von G, so ist G abelsch.
- (iii) Ist die Abbildung $\phi: G \longrightarrow G$, $x \longmapsto x^{-1}$ ein Automorphismus, so ist G abelsch.

(6 Punkte)