TECHNISCHE UNIVERSITÄT BERLIN

SS 2008

Fakultät II – Institut für Mathematik

Dozent: Prof. Dr. Michael Pohst Assistent: Osmanbey Uzunkol

www.math.tu-berlin.de/~kant/algebra1-ss2008

Abgabe:12.06.2008 in der Übung

8. Übung Algebra I

(Ideale, Faktorringe, Chinesischer Restsatz)

1. Aufgabe

Wir bezeichnen mit $A^{m \times n}$ die $m \times n$ - Matritzen über A. Geben Sie die Charakteristik folgender Ringe an:

- $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$,
- $(\mathbb{Z}/6\mathbb{Z})^{2\times 2}$,
- $(\mathbb{Z}/5\mathbb{Z})^{3\times3}$.

(3 Punkte)

2. Aufgabe

- (a) Bestimmen Sie alle Idempotenten von $\mathbb{Z}/60\mathbb{Z}$. Welche davon sind orthogonal?
- (b) Es seien p eine Primzahl und $k \in \mathbb{N}$. Bestimmen Sie alle Idempotente von $\mathbb{Z}/p^k\mathbb{Z}$. Welche davon sind orthogonal?

(4 Punkte)

3. Aufgabe

(a) Es sei I ein Ideal eines kommutativen Ringes R. Der **Annihilator** von I ist definiert durch

$$\operatorname{Ann}(I) := \{ x \in R | xa = 0 \text{ für alle } a \in I \}.$$

Zeigen Sie, dass Ann(I) ein Ideal von R ist.

(b) Zeigen Sie, dass $I = \{[n] \in \mathbb{Z}/20\mathbb{Z} \mid n \text{ ist gerade}\}$ ein Ideal von $\mathbb{Z}/20\mathbb{Z}$ ist. Bestimmen Sie den Annihilator von I.

(4 Punkte)

4. Aufgabe

Es seien p eine Primzahl und n_p das Produkt aller Primzahlen q, für die q-1 ein Teiler von p-1 ist. Zeigen Sie, dass das von der Menge $\{m^p-m|m\in\mathbb{Z}\}$ erzeugte Ideal von \mathbb{Z} gerade (n_p) ist.

(4 Punkte)

5. Aufgabe

Man kann den chinesischen Restsatz für einen kommutativen Ring R mit 1 so formulieren:

$$R/a_1 \cdots a_n \cong \prod_{i=1}^n R/a_i,$$

wobei die Ideale a_i komaximal sind $(1 \le i \le n)$ (d.h. $a_i + a_j = R$ für $1 \le i < j \le n$).

Nach Voraussetzung existieren $e_{ij} \in a_i$ und $e_{ji} \in a_j$ mit $1 = e_{ij} + e_{ji}$ $(1 \le i < j \le n)$. Es sei

$$e_i := \prod_{l=1}^{i-1} e_{li} \ (1 < i \le n).$$

Eine explizite Berechnung des Urbildes von (x_1+a_1,\cdots,x_n+a_n) ist mittels Newton-Verfahrens möglich. Dies läuft so: Setze $y_1=x_1$ und berechne iterativ $y_{k+1}=y_k+(x_{k+1}-y_k)e_{k+1}$. Dann ist $x=y_n$ das gewünschte Element.

- (a) Erklären Sie, warum das Newton-Verfahren funktioniert.
- (b) Implementieren Sie den chinesischen Restsatz für ganze Zahlen in $\mathbb Z$ in mittels Newton-Verfahrens.

(5+2 Punkte)

Hinweis: Die 5. Aufgabe kann bis 19.06.2008 abgegeben werden.