
1. Valuation Theory

In this section we introduce the concept of valuations for the fields
under consideration. Namely, any valuation can be used to turn those
fields into normed vector spaces. Hence, we have the notion of distance
between different elements. Eventually this can be used for a comple-
tion of those spaces so that we have the usual tools for Banach spaces
at hand.

Of course, the concept of a valuation imitates the role of the usual
absolute value in the real or complex numbers. If we study polyno-
mial rings in non-zero characteristic a transfer of that concept is by no
means obvious. The situation is even worse for multivariate polyno-
mials. In that case the values of powers of different variables need to
be compared. Hence, the values will e.g. not any more belong to an
archimedian ordered group (or ring) like the real numbers. Since mul-
tivariate polynomials will occur rarely in this book we will keep up a
totally general concept only at the very beginning of our considerations.

The major emphasis in our discussion is on rings and orders rather
than fields. Since these rings are entire their quotient fields always
exist and we shall study valuations of fields rather than rings in this
section. The development of the theory becomes much easier this way.

The essential properties of the ordinary absolute value | | for ele-
ments of R or C are:

(1) |x| ≥ 0 for all elements x with equality exactly for x = 0;
(2) |x+ y| ≤ |x| + |y| for all elements x, y;
(3) |xy| = |x| |y| for all elements x, y.

If v is to become a valuation of a given field F then clearly the set of
values v(x) (x ∈ F ) should be contained in a totally ordered commu-
tative ring Φ. We need a total ordering so that we can distinguish any
two values in Φ. For the properties 2. and 3. we also need to add and
multiply values. Hence, we let Φ be a ring with a total ordering <. For
any two elements α, β of Φ we have exactly one of the possibilities:

α < β, α = β, β < α .

Any non-zero element α is therefore either positive (0 < α) or negative
(α < 0). Also, we have the law of transitivity, i.e. for α < β and β < γ
we have α < γ.

What we additionally need is the compatibility of < with addition
and multiplication in Φ. Imitating the total ordering of R we stipulate
the following 2 axioms for the elements α, β of Φ:

(1) β < α implies β + γ < α + γ ∀γ ∈ Φ,
(2) 0 < α and 0 < β implies 0 < αβ.
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Definition 1.1. A totally ordered commutative ring Φ with proper-
ties 1. and 2. is called algebraically ordered.

We demonstrate that conditions 1. and 2. above are sufficient for
establishing the usual rules known for the ordering < in R.

Lemma 1.2. For algebraically ordered rings Φ we have

(1) 0 < α ⇔ −α < 0 ,
(2) β < α⇔ 0 < α− β ,
(3) 0 < α ⇔ β < β + α,
(4) 0 < α and α + β = 0 implies β < 0,
(5) α < 0 and β < 0 implies 0 < αβ,
(6) α < 0 and 0 < β implies αβ < 0,

hence algebraically ordered rings are necessarily entire.
If Φ has a unit element 1 6= 0 with respect to multiplication then we
also have
(7) 0 < 1,
(8) 1 < α and 0 < β implies β < αβ,
(9) α < 1 and 0 < β implies αβ < β
for all α, β ∈ Φ.

Proof For 0 < α we obtain −α < α+(−α) = 0 by the first axiom,
and likewise −α < 0 implies 0 = (−α)+α < 0+α = α. This proves the
first part. The second is obtained by adding −β to β < α, respectively
β to 0 < α − β. Part (3) is an immediate consequence of axiom (1),
and (4) follows from (3). Part (5) is immediate from αβ = (−α)(−β),
part (1) and axiom (2). Then (6) follows from 0 = αβ + α(−β) and
(4).
Part (7) results from 1 = 12 = (−1)2, 1 6= 0, (1) and (5). For (8) we
note that β < αβ is tantamount to 0 < β(α− 1) because of (2); hence,
the result follows from axiom (2). Similarly, (9) follows from (2) and
axiom (2).

2

Besides the total order relation < we will also frequently use the
notation α ≤ β for either α < β or α = β. Also we write α > β for
β < α and α ≥ β if either α > β or α = β holds.

On the rational numbers Q K. Hensel introduced valuations which
behave rather differently from the previously only known single one,
the ordinary absolute value.

Example Fixing p ∈ P every non-zero rational number x can be
uniquely written in the form x = ±pm a

b
with m ∈ Z and a, b ∈ N such
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that p - (ab). Hensel noticed that

| |p : Q → R : x 7→
{

p−m for x 6= 0
0 for x = 0

}

indeed has the properties of the ordinary absolute value stated above.
Instead of the triangle inequality we even get the stronger result

|x+ y|p ≤ max(|x|p, |y|p) .

This has far reaching consequences. For example,

Rp := {x ∈ Q | |x|p ≤ 1}
becomes a ring, the so-called valuation ring with respect to | |p. It is
easily seen that Rp is a local ring with unique maximal ideal m = {x ∈
Q | |x|p < 1}. We emphasize the difference of the topologies introduced
in Z by | | and by | |p. For any 0 < ε < 1 the ε–neighborhood of
0 consists of {0} in the first case and of {m ∈ Z | pk|m for k >
log(ε)/ log(p)}. It is noteworthy that besides the ordinary absolute
value all valuations of Q of interest are of that form.

We therefore distinguish two types of valuations, the archimedian
ones like | |, and the non-archimedian ones like | |p.

Definition 1.3. Let F be a field. A mapping v of F into an alge-
braically ordered unital ring Φ is called a valuation, if it has the prop-
erties

(1) 0 < v(x) for all x ∈ F× and v(0) = 0,
(2) v(xy) = v(x)v(y) for all x, y ∈ F ,

and either
(3) v(x+y) ≤ max(v(x), v(y)) for all x, y ∈ F (non-archimedian

valuation),
or only the weaker condition

(4) v(x + y) ≤ v(x) + v(y) for all x, y ∈ F (archimedian valua-

tion).

A valuation v with v(F ) = {0, 1} is called trivial.
In case Φ = R the valuation is called real.

Remark We emphasize that for non-archimedian valuations v the
values v(x) for x ∈ F× just need to form a totally ordered group, say
G. Hence, v(F ) = G ∪ {0} if we require v(x) > 0 for x 6= 0. For
example, the p–adic valuations on Q introduced above have non-zero
values in {pk | k ∈ Z} ⊂ R>0. We will later see that they are a special
case of so-called discrete valuations (see ...)
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Example Let F be a finite field of q elements and ω be a generator
of F×. Because of ωq−1 = 1F any valuation of F satisfies v(ω) = 1Φ

and therefore v(x) = 1Φ for all non-zero x ∈ F . Hence, finite fields
admit only trivial valuations.

In practice, we are sometimes in a situation where the field F under
consideration is the quotient field of an entire ring R. If we have a
map v from R into an algebraically ordered field Φ which satisfies the
axioms for a valuation stated in the previous definition then v can be
easily extended to a valuation of F by setting

v(
a

x
) :=

v(a)

v(x)
(a, x ∈ R, x 6= 0) .

We just need to check that this extension of v from R to F indeed has
the properties (1)-(4) of 1.3. The first two of those are obvious. For
the value of a sum we obtain

v(
a

x
+
b

y
) = v(

ay + bx

xy
)

from which the property (3), respectively (4), immediately follows.

Since the non-archimedian valuations are more frequent than the
archimedian ones and also less familiar we will discuss some of their
properties in greater detail.

Lemma 1.4. A non-archimedian valuation v of a field F has the prop-
erties:

(1) v(1) = 1,
(2) v(−x) = v(x),
(3) v(x+ y) = max(v(x), v(y)) in case v(x) 6= v(y)

for all x, y ∈ F .

Proof We have v(1) = v(12) = v(1)2 implying v(1) > 0. Hence,
we obtain v(1) = 1 by 1.2. Similarly, we get v(−1) = 1 and therefore
v(−x) = v(−1)v(x) = v(x). To prove the last property we assume
without loss of generality that v(x) < v(y) and conclude

v(y) = v(y + x + (−x)) ≤ max(v(y + x), v(x))

= v(y + x) ≤ max(v(x), v(y)) = v(y) ,

where we necessarily must have equality everywhere.
2

Corollary 1.5. Let us assume that the non-zero element x is algebraic
over a given field F . If v is a non-archimedian valuation of F (x) with
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v(a) ≤ 1 for all a ∈ F then we obtain v(x) ≤ 1. If v is trivial on F ,
i.e. v(a) = 1 for all a ∈ F , then we also get v(x) = 1.

Proof The element x satisfies an equation

xn + a1x
n−1 + ... + an−1x + an = 0 (ai ∈ F, 1 ≤ i ≤ n) .

It follows that

1 ≥ v(an) = v(−x)v(xn−1 + a1x
n−2 + ... + an−1)

which cannot be true for v(x) > 1. In case v(an) = 1 clearly v(x) = 1
is the only possibility.

2

From now on we stipulate that all occuring valuations are

non-trivial.

From the definition of non-archimedian valuations it is obvious that
the elements with value ≤ 1 form a subring of F .

Proposition 1.6. Let F be a field with non-archimedian valuation v.
Then

Rv := {x ∈ F | v(x) ≤ 1}
is a local ring (valuation ring) with maximal ideal (valuation ideal)

mv := {x ∈ F | v(x) < 1} .

Proof Since v is non-trivial there exist elements x, y ∈ F with
v(x) < 1 < v(y). Then it is straightforward that the unit group of Rv

is
U(Rv) = {x ∈ F | v(x) = 1} .

2

As we noted in the preceding proof the ring Rv is a proper subring
of F . We use this for a characterization of valuation rings.

Theorem 1.7. Let F be a field and R be a proper unital subring of F .
R is a valuation ring for a suitable (non-archimedian) valuation v on
F if and only if R has the property that for any non-zero x ∈ F we
have x ∈ R or x−1 ∈ R.

Proof If R is a valuation ring of a valuation v of F then 0 ∈ R
and an arbitrary non-zero element x ∈ F either satisfies v(x) ≤ 1 or
v(x) > 1 > v(x−1).

The second part of the proof is quite tedious since we actually need
to construct a valuation for F from the few prerequisites. The basic
idea is to put elements x, y ∈ F which will get the same value into
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an equivalence class. From the definition of a valuation ring it is clear
that non-zero x, y will have the same values if and only if x

y
is a unit

in R.
In a first step we therefore introduce the following relation on F . We

set

x ∼ y :⇔ (x = y = 0 ∨ (
x

y
∧ y

x
∈ R)) .

We remark that the only element related to 0 is 0 itself. Hence, we can
reduce almost all of the following considerations to non-zero elements.
We show that ∼ is an equivalence relation.
Because of 1 ∈ R the relation ∼ is reflexive. It is obviously symmetric.
For the transitivity we note that x ∼ y and y ∼ z imply that x

z
= x

y
y
z

and z
x

= z
y

y
x

both belong to R, hence x ∼ z.

Next we show that ∼ is compatible with multiplication.
For x ∼ y and u ∼ v we have x

y
, y

x
, u

v
, v

u
∈ R. But then also xu

yv
, yv

xu

belong to R implying that xu ∼ yv.
Hence, the equivalence classes Ca := {x ∈ F | x ∼ a} (a ∈ F×) form

a multiplicative group G with unit element C1. Clearly, C−1
a = Ca−1 .

We show that G will be equipped with a total ordering if we define:

Ca > Cb :⇔ (a 6∼ b ∧ a−1b ∈ R) .

We need to prove that this definition is independent of the choice of
representatives in the equivalence classes. For a−1b ∈ R, Ca = Cã

and Cb = Cb̃ we have aã−1, ãa−1, bb̃−1, b̃b−1 ∈ R implying ã−1b̃ =

(ã−1a)(a−1b)(b−1b̃) ∈ R, hence Cã > Cb̃. For a, b ∈ F× there holds
exactly one of the three relations

(1) Ca = Cb in case a
b
, b

a
are both contained in R,

(2) Ca > Cb in case b
a
∈ R and a

b
6∈ R,

(3) Cb > Ca in case a
b
∈ R and b

a
6∈ R.

Additionally we require Ca > C0 for all a ∈ F× which is compatible
with the group operations. Henceforth we identify C0 and 0.

Next we want to introduce a valuation of F with values in G ∪ {0}.
For this we put

ϕ : F → G ∪ {0} : a 7→ Ca .

We need to verify the axioms of a valuation. According to our con-
struction we have v(a) ≥ 0 with equality exactly for a = 0. For the
multiplicativity of v we note that v(ab) = Cab = CaCb = v(a)v(b) for
all a, b ∈ F . Finally, we need to show v(a+ b) ≤ max(v(a), v(b)). This
is obvious if one of the summands is zero or if a + b ∼ a, respectively
a+ b ∼ b. We therefore assume that Ca 6= Ca+b 6= Cb and have to show
that Ca+b > Ca and Ca+b > Cb cannot both hold. Namely, in that
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case we had a(a+ b)−1, b(a+ b)−1 ∈ R and (a+ b)a−1, (a+ b)b−1 6∈ R.
Because of 1 ∈ R the latter implies b

a
, a

b
6∈ R, which is in contradiction

with our assumptions on R.
We will also show how to obtain a valuation from this in accordance

with Definition 1.3. This means that we have to embed G ∪ {0} into
a suitable algebraically ordered ring. The easiest way to do this is to
introduce the group ring

Φ := Z[G] =

{

∑

g∈G

mgg

∣

∣

∣

∣

∣

mg ∈ Z, mg = 0 for almost all g ∈ G

}

.

The group G is embedded into Φ via

ι̃ : G→ Φ : g 7→ 1 · g .

We also obtain the zero element of Φ as unique image of C0 so that the
embedding can be canonically extended to

ι : G ∪ {0} → Φ : g 7→
{

1 · g for g 6= 0
0 for g = 0

.

Next we introduce an ordering of Φ via
∑

g∈G

mgg >
∑

g∈G

ngg :⇔ (∃g0 ∈ G : mg0
> ng0

∧ (∀g ∈ G : g > g0 ⇒ mg = ng)) .

It is easily seen that > is indeed a total ordering of Φ. What we need,
however, is that Φ is algebraically ordered. According to Definition 1.1
we must verify for α :=

∑

g∈Gmgg, β :=
∑

g∈G ngg ∈ Φ that

(1) α > 0 implies β + α > β for all α, β ∈ Φ.
In case α > 0 there is an element ga ∈ G with mga

> 0 and
mg = 0 for all g ∈ G, g > ga. But then the highest index for
which the sums for β +α and β differ is also ga, and we clearly
have mga

+ nga
> nga

.
(2) α > 0 and β > 0 yields αβ > 0.

We take up the notations for α, β in 1. and also require that
gb ∈ G satisfies ngb

> 0 and ng = 0 for all g > gb in G. Then
we get

αβ =
∑

g∈G

(

∑

g1g2=g

mg1
ng2

)

g .

For g > gagb in g = g1g2 we must have either g1 > ga with
mg1

= 0 or g2 > gb with ng2
= 0, in each case the inner sum is

zero. Similarly, we see that the highest non vanishing coefficient
occurs for g = gagb. It equals mga

ngb
> 0.
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Since the embedding ι of G∪ {0} into Φ obviously satisfies ι(g) > ι(h)
for g > h we have indeed obtained a valuation of F with values in an
algebraically ordered ring.

2

We list a few consequences of that theorem.

Lemma 1.8. If the ring R is a valuation ring then any two ideals
a, b satisfy either a ⊆ b or b ⊆ a.

Proof. We assume that neither a is contained in b nor b in a.
Then there are (non-zero) elements a ∈ a \ b, b ∈ b \ a. Then either a

b

or b
a

belongs to R and we get a
b
b = a ∈ b in the first case or b

a
a = b ∈ a

in the second. This contradicts the choice of a, b.
2

Corollary 1.9. A noetherian valuation ring is a principal ideal do-
main.

Proof. Let a1, ..., an be generators of an ideal a, i.e. we have
a = Ra1 + ... + Ran. Among the ideals Rai (1 ≤ i ≤ n) there is a
largest one and without loss of generality we can assume that this is
Ra1. This yields a ⊇ Ra1 ⊇ Ra1 + ...+Ran = a, hence a = Ra1.

2

Next we show that non-trivial non-archimedian valuations exist for
fields with suitable subrings. (The prerequisites clearly exclude finite
fields.)

Lemma 1.10. (Chevalley) Let F be a field and R be a proper subring
of F containing 1 and a non-zero prime ideal p. Then there exists
a valuation ring Φ of F with maximal ideal m satisfying R ⊂ Φ and
m ∩ R = p.

Proof The general case is reduced to the one in which R is a local
ring. We start with that reduction.

In case R itself is not a local ring we obtain upon localization with
respect to p:

R ⊂ R̃ :=
R

R \ p
⊂ F .

R̃ is a local ring with maximal ideal p̃ = p

R\p
. Assuming the result for

local rings there exists a valuation ring Φ with R̃ ⊂ Φ and the maximal
ideal m of R̃ satisfies m ∩ R̃ = p̃. Clearly, R is contained in Φ and for
the intersection of m with R we obtain

m ∩R = m ∩ (R̃ ∩ R) = (m ∩ R̃) ∩ R = p̃ ∩ R = p .
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Henceforth, we assume that R itself is local. To exhibit a candidate
for Φ we consider the set

M := {S | R ⊆ S ⊂ F , S a ring with 1 6∈ pS} .

M is not empty since it contains R. According to Zorn’s lemma it
contains a maximal element, say T . We will show that T is indeed the
valuation ring we are looking for. From our assumptions we know that
1 6∈ pT , hence p is contained in a maximal ideal a of T . Then a does
not contain 1 either, and 1 is also not an element of p T

T\a
because of

T ∩ pT
T\a

⊆ T ∩ a

T\a
= a. Hence, the localization of T at a belongs to M,

it must therefore coincide with T , i.e. T is a local ring. According to
our assumptions we know that R is a subring of T . Also, the maximal
ideal a of T intersects R in p since R is a local ring.

We still need to show that T is a valuation ring, i.e. that for x ∈ F \T
the inverse element x−1 is in T . Because of T ⊂ T [x] we must have
1 ∈ pT [x], and there exists a presentation

1 = −
m
∑

i=0

aix
i (ai ∈ a, am 6= 0) .

If there exist elements x ∈ F with x 6∈ T and x−1 6∈ T we choose
such an x which has a representation of 1 in which the exponent of
the maximal occuring power xm is as small as possible. The element
1 + a0 is not in a and is therefore a unit of T . Setting bi = ai

1+a0

the
representation of 1 becomes

1 +

m
∑

i=1

bix
i = 0 ,

or

(x−1)m +
m
∑

i=1

bi(x
−1)m−i = 0 .

This has the consequence that the proper overring T [x−1] of T equals
the finite sum

∑m−1
i=0 Tx−i. Hence, we obtain 1 ∈ a[x−1] =

∑m−1
i=0 ax−i

and therefore a representation of 1 for which the maximal occuring
exponent is smaller. Consequently, every element x of F either belongs
to T or its inverse x−1 does. This means that T is indeed a valuation
ring of F .

2

Corollary 1.11. Let F be a field and R be a proper subring of F
containing 1 and a non-zero ideal b ⊂ R. Then there exists a valuation
ring Φ of F with maximal ideal m satisfying R ⊂ Φ and b ⊂ m.
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Next we study the extension of valuations for field extensions. From
the simple example E = Q( 3

√
2) we conclude that an extension of the

2-adic valuation from Q to E must satisfy | 3
√

2 |2 = 2−1/3. We must
therefore assume that the algebraically ordered ring Φ contains the
appropriate elements.

Definition 1.12. A group G is called divisible if the equation xn = α
has a solution x ∈ G for every α ∈ G and every n ∈ N.

Theorem 1.13. (Chevalley) Any non-archimedian valuation v of a
field F into an algebraically ordered ring Φ with divisible multiplicative
group can be extended to a valuation of every field E containing F .

Proof We consider the set S of all fields K between F and E
to which v can be extended. Because of F ∈ S the set S contains a
maximal element, say K0. We need to consider the following two cases
separately:
(i) there is an element x ∈ E \K0 which is transcendental over K0;
(ii) E is algebraic over K0.

In the first case we extend the prolongation of v from F to K0 (which
we again denote by v) to a valuation w of K0(x). We define

w : K0[x] → Φ : f(x) =
n
∑

i=0

aix
i 7→ max{v(ai) | 0 ≤ i ≤ n}

and verify that w satisfies the axioms of a valuation on K0[x]. Clearly,
w(f(x)) ≥ 0 for all polynomials f(x) and w(f(x)) equals 0 if and only
if f(x) = 0. For polynomials f(x) =

∑n
i=0 aix

i and g(x) =
∑n

i=0 bix
i

(here we admit 0 for the leading coefficient to make the presentation
easier) we get

w(f(x) + g(x)) = max{v(ai + bi) | 0 ≤ i ≤ n}
≤ max{max{v(ai), v(bi)} | 0 ≤ i ≤ n}
≤ max{max{v(ai) | 0 ≤ i ≤ n},max{v(bi) | 0 ≤ i ≤ n}}
= max{w(f(x)), w(g(x))}

For the verification of the multiplicativity of w we assume that ρ, σ ∈
{0, 1, ..., n} are minimal subject to v(aρ) = w(f(x)), v(bσ) = w(g(x)).
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Also we put ai = 0, bi = 0 for i = n+ 1, ..., 2n. Then

w(f(x)g(x)) = max{v
(

i
∑

k=0

akbi−k

)

| 0 ≤ i ≤ 2n}

≤ max{max{v(ak), v(bi−k) | 0 ≤ k ≤ i} | 0 ≤ i ≤ 2n}
≤ max{v(ai) | 0 ≤ i ≤ n}max{v(bi) | 0 ≤ i ≤ n}
= w(f(x))w(g(x))

and

v

(

ρ+σ
∑

k=0

akbρ+σ−k

)

= v(aρ)v(bσ) = w(f(x))w(g(x))

prove that w is indeed multiplicative.
Eventually we must extend w from K0[x] to the quotient field K0(x)

by setting

w : K0(x) → Φ :
f(x)

g(x)
7→ w(f(x))

w(g(x))
.

We already proved that this extension of a valuation w from a ring to
its quotient ring yields a valuation of the latter.

Since it extends v this is a contradiction to the maximal choice of
K0.

In the second case we either have K0 = E and we are done, or
there exists an element x ∈ E \ K0 which is algebraic over K0. Let
f(t) ∈ K0[t] be the minimal polynomial of such an element x, say of
degree n > 1.

According to Chevalley’s Lemma 1.10 there exists a valuation w of
K1 := K0(x) such that the correswponding valuation ring Rw contains
Rv and that the intersection of the valuation ideal mw with Rv equals
mv. We note that any element z ∈ K0 \Rv satisfies v(z−1) < 1 so that
z−1 is in mv. Therefore z−1 also belongs to mw and we have z 6∈ mw.
This yields

mw ∩K0 = mv .

We recall that H = v(K×
0 ) and H̃ = w(K×

1 ) are algebraically ordered
abelian groups. Because of

∀z ∈ K0 : v(z) < 1 ⇔ w(z) < 1

we get

∀y, z ∈ K0 : v(y) < v(z) ⇔ w(y) < w(z)

and the mapping

τ : H → H̃ : v(z) 7→ w(z)
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is an order preserving group monomorphism. We want to show that
the image τ(H) is of finite index in H̃.

For arbitrary s ∈ N we choose y1, ..., ys ∈ K×
1 such that w(yi)τ(H)

are pairwise distinct elements of H̃/τ(H). We will show that y1, ..., ys

are K0 linearly independent with the consequence that the index of
τ(H) in H̃ is bounded by n = [K1 : K0]. For any representation of 0
of the form

0 =

s
∑

i=1

aiy1 (ai ∈ K0)

we obtain

0 = w(0) = w(

s
∑

i=1

aiyi)

= max{w(aiyi) | 1 ≤ i ≤ s} (since these values are all different)

= max{w(ai)w(yi) | 1 ≤ i ≤ s} ,

hence, w(ai) = 0 implying ai = 0 for i = 1, ..., s and y1, ..., ys are
K0-linearly independent.

Consequently, there is a fixed exponent m such that for every g ∈ H̃
we have gm ∈ τ(H), respectively for all y ∈ K×

1 there is z ∈ K×
0 with

w(y)m = τ(v(z)). We can therefore define the mapping

T : H̃ → Φ : w(y) 7→ v(z)1/m .

It is well defined since τ is injective and Φ algebraically ordered and di-
visible. It is also multiplicative since τ has this property. The mapping
T is used to extend v to K1 via

v̂ : K1 → Φ : y 7→
{

0 for y = 0
T (w(y)) otherwise

.

Clearly, v̂ |K0
= v. It remains to show that v̂ has the properties of a

valuation. v̂(0) = 0 and v̂(y) > 0∀y ∈ K×
1 follow immediately from

the definition of v̂. For y, ỹ ∈ K×
1 there are z, z̃ ∈ K×

0 subject to
w(y)m = τ(v(z) and w(ỹ)m = τ(v(z̃). Since τ is multiplicative we
obtain w(yỹ)m = τ(v(zz̃). From this v̂(yỹ) = v̂(y)v̂(ỹ) is obvious (also
for y = 0 or ỹ = 0). Eventually, we need to show the strong triangular
inequality. We have

w(y + ỹ)m ≤ (max{w(y), w(ỹ)})m = max{w(y)m, w(ỹ)m}
and fix ź ∈ K×

0 subject to τ(v(ź)) = w(z + z̃)m. Since τ is or-
der preserving we know that v(ź) ≤ max{v(z), v(z̃)} and therefore
also v(ź)1/m ≤ max{v(z)1/m, v(z̃)1/m}. From this T (w(y + ỹ)) ≤
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max{T (w(y)), T (w(ỹ))} and v̂(y + ỹ) ≤ max{v̂(y), v̂(ỹ)} are imme-
diate.

2

As shortly discussed in the example about Hensel’s p-adic valuations
for the rational number field any valuation of a field F defines a topol-
ogy for F .

Definition 1.14. Two valuations vi (i = 1, 2) of a field F are called
equivalent if they define the same topology on F , i.e. the sets {x ∈
F | v1(x) < 1} and {x ∈ F | v2(x) < 1} coincide.

For example, the archimedian valuations | | and | |c for any real
number 0 < c ≤ 1 are equivalent on C. The same holds for the p-adic
valuations | |p and | |cp on Q. Usually, we are only interested in the
topology and will therefore consider classes of equivalent valuations
rather than a single representative of any such class. We note that for
non-archimedian valuations the valuation rings and valuation ideals
coincide for all valuations within a fixed equivalence class.

We already saw that non-archimedian valuations v of fields F have
values v(x) for x 6= 0 in an algebraically ordered group. For our pur-
poses it is most interesting when the image v(F×) is a cyclic group,
say 〈γ〉. Then there exists an element π in the valuation ideal mv of
v with v(π) = γ and we can identify v(F×) with Z. Non-trivial non-
archimedian valuations with this property are called discrete. Discrete
valuations will play a predominant role in what follows since they have
special important properties. One of those is described in the next
lemma.

Lemma 1.15. The valuation ring Rv of a discrete valuation v is a
principal ideal ring. Its proper ideals are of the form a = mk

v with
k ∈ N.

Proof There is an element π - naturally in mv - with v(π) gener-
ating v(F×). We claim that mv coincides with πRv. Clearly, we have
πRv ⊆ mv. On the other hand, for any x ∈ mv we get x/π ∈ Rv and
therefore mv ⊆ πRv.
For non-zero ideals a of Rv we conclude analogously that any α ∈ a

subject to v(α) = max{v(x) | x ∈ a} satisfies

a = αRv = πνv(α)Rv

for a suitable exponent νv(α) depending on v and α. 2

Hence, discrete valuations can also be written additively rather than
multiplicatively. For his we choose a generating element π of mv. Then
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for any non-zero x ∈ F there is a unique exponent m such that xπ−m

is a unit of the valuation ring Rv. Since two different generators of mv

also differ by a unit of Rv we can define the map

ν = νv := F → Z ∪ {∞} : x 7→
{

m for x 6= 0
∞ for x = 0

The map ν is called an exponential valuation of F . The properties of
v immediately yield the correponding ones for exponential valuations:

(1) ν(x) = ∞ if and only if x = 0;
(2) ν(xy) = ν(x) + ν(y) ∀x, y ∈ F ;
(3) ν(x + y) ≥ min(ν(x), ν(y))∀x, y ∈ F ;
(4) ν(π) = 1, hence, the map ν is surjective.

Any non-archimedian valuation v of a finite extension E of F restricts
to a valuation v0 on F . The group v(F×) is a subgroup of finite index in
v(E×) according to the proof of Chevalley’s Theorem. If v is discrete
then the same holds for v0. We can therefore attach an exponential
valuation to it similar as above. However, we note that if ν is an
exponential valuation on E then its restriction ν0 to F is in general not
surjective anymore.

Conversely, if we start with a discrete valuation v0 on F it has pro-
longations v to any finite extension E of F according to Chevalley’s
Theorem and G := v(F×) is of finite index, say k, in v(E×). Let
ξ1, ..., ξk ∈ Rv ⊂ E subject to

v(E×) =

k

·
⋃

i=1

v(ξi)G

and

v(ξi) > max{v(x) | x ∈ F ∩ Rv0
} .

The values v(ξi) are pairwise distinct and we can assume that v(ξ1) >
v(ξj) for 2 ≤ j ≤ k. But then we obtain exponents mj satisfying
v(ξ

mj

1 ) = v(ξj). But this yields v(E×) = 〈v(ξ1)〉 showing that v is
necessarily discrete.

From now on we assume that all valuations v of a given field

are real, i.e. v(F ) ⊆ R≥0.

We will see that this restriction is still sufficient to cover all valuations
of global fields and we can additionally use all the properties of real
numbers, especially limits of sequences.
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Proposition 1.16. (Characterization of archimedian valuations) Let
F be a field with a valuation v : F → R≥0. Then v is non-archimedian
if and only if the set of values v(N) is bounded. (Here N denotes the
natural numbers viewed as sums of ones which are contained in F .)

Proof If v is non-archimedian then the set v(N) is bounded be-
cause of v(n) ≤ v(1) for all n ∈ N.
On the other hand, let us assume that v(n) ≤ M holds for all natural
numbers n. Then we obtain for x, y ∈ F with max{v(x), v(y)} = W

v(x+ y)n = v(
n
∑

i=0

(

n

i

)

xiyn−i)

≤
n
∑

i=0

MW n

= (n+ 1)MW n

Hence,

v(x + y) ≤ ((n + 1)M)1/nW ,

where the right-hand side converges to W for n→ ∞.
2

We are now in a position to determine - up to equivalence - all non-
trivial valuations of our base fields, the field of rational numbers and
rational function fields in one variable over finite fields.

Example

(i) We want to determine all non-trivial valuations v of the rational
numbers.
In the first part we assume that v(n) ≤ 1 for all natural numbers n, and
therefore also for all elements of Z. Since v is non-trivial there exists a
smallest natural number bigger than one, say p, with c := v(p) < 1. It
is easy to see that p must be a prime number. If q is a prime number
different from p, then we must necessarily have v(q) = 1. Namely,
in case v(q) < 1 there exists a natural number n such that v(pn) <
1
2
, v(qn) < 1

2
and the extended Euclidean algorithm yields elements

µ, ν ∈ Z with µpn + νqn = 1. This yields the contradiction

1 = v(1) ≤ v(µpn) + v(νqn) ≤ v(pn) + v(qn) < 1 .

Now, every non-zero element x ∈ Q can be uniquely written in the
form x = pκ r

s
with κ ∈ Z and r ∈ Z \ {0} , s ∈ N such that p does

not divide rs. Then the v-value of x is v(x) = cκ. This and v(0) = 0
imply that v is equivalent to the p-adic valuation of Q. For the latter
we normalize to c = 1

p
.
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Alternatively, let us assume that there exists an element b ∈ N, more
precisely b ∈ Z>1, with v(b) > 1. We fix b. Now let g be an arbitrary
element of Z>1. We consider the g-adic expansion of bn for n ∈ N:

bn =

Nn
∑

m=0

cnmg
m (0 ≤ cnm < g, cnNn

6= 0) .

As a consequence we have bn ≤ gNn, hence Nn ≤ n log b/ log g. Because
of v(0) = 0 and v(1) = 1 the trinagle inequality yields v(m) ≤ m for
all m ∈ Z≥0. Setting M := max{1, v(g)} we obtain

v(b)n ≤
Nn
∑

m=0

v(cnmg
m) ≤ g(Nm+1)MNn ≤ g

(

n log b

log g
+ 1

)

(

M log b/ log g
)n

.

At this stage we need a result from elementary calculus:
Because of

∀ε > 0∀n ∈ N : (1 + ε)n ≥ 1 + nε+
n(n− 1)

2
ε2

all γ ∈ R>0 for which the sequence
(

γn

n

)

n∈N
is bounded in R must lie

in the half open interval ]0, 1].
Applying this result to γ := v(b)/M log b/ log g we see that γ ≤ 1 and

conclude that M > 1 with the consequence M = v(g). But then γ ≤ 1
is tantamount to log v(b)/ log b ≤ log v(g)/ log g.
Because of v(g) > 1 we can interchange the rôles of b and of g and get

s := log v(b)/ log b = log v(g)/ log g

for all g ∈ Z>1, respectively v(g) = gs. Hence, v is equivalent to the
ordinary absolute value on Q. We note that s is necessarily bounded
from above by 1 since otherwise the triangle inequality is violated:
2s = |1 + 1|s should be bounded by 1s + 1s = 2.

(ii) Let K := Fq(t) be the rational function field over the finite field
Fq with q = pn elements, p a prime number. We shall see that in this
case all non trivial valuations on K are non archimedian.

We recall that every valuation acts trivial on Fq. Imitating our con-
clusions for Q we distinguish the following two cases. At first we as-
sume that v(f) ≤ 1 for all f in Fq[t]. Again, since v shall not be trivial
there must exist a polynomial of lowest (positive) degree, say π, with
c := v(π) < 1 and this polynomial is necessarily irreducible. Without
loss of generality we can assume that π is monic, hence a prime poly-
nomial of Fq[t]. As in (i) we deduce that every prime polynomial ψ of
Fq[t] different from π must have v-value 1. Also in this case every non

zero element of Fq[t] can be written in the form x = πκ f
g

with κ ∈ Z
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and r ∈ Fq[t] \ {0} , s ∈ Fq[t] such that π does not divide fg. Then the
v-value of x is v(x) = cκ. This and v(0) = 0 imply that v is equivalent
to the π-adic valuation of Fq which is obtained upon normalizing the
constant c to q−deg(π).

We remark that the normalization of the non trivial valuations of
Q (p-adic valuations, respectively the ordinary absolute value) leads
to the so-called product formula. We denote the set of all those
valuations of Q by VQ and get

∏

v∈VQ

v(x) = 1 ∀x ∈ Q \ {0} .

The proof of that formula is straightforward and left as an exercise
to the reader. Analogously, the normalization of the valuations of a
rational function field over a finite field of constants yields a product
formula. Again, we leave the proof as an exercise to the reader.

We will now demonstrate that field elements of a global field F can
be approximated with respect to inequivalent valuations. In the next
two sections we will learn that the set R of F defined by

R := {x ∈ F | mx/F0
(t) ∈ R0[t]}

is a subring of F which is also a free R0-module of rank n = (F : F0). R
is even a Dedekind Ring meaning that every non-zero ideal of R is a
product of prime ideals. That presentation is unique up to the order of
the factors. This additional information allows us to determine all non-
trivial non-archimedian valuations in F up to equivalence. We recall
that two non-archimedian valuations of a field are called equivalent if
their valuation rings coincide.

By Chevalley’s Lemma we know that for every non-zero prime ideal
p of R there is a valuation ring Rv of F with maximal ideal mv such
that R ⊆ Rv and mv ∩ R = p. We want to show that any such
valuation ring Rv coincides with R̃ := R

R\p
. Since in that ring all

occuring denominators are units in Rv it is contained in any valuation
ring Rv with the stipulated properties R ⊆ Rv and mv ∩R = p.

We show that R̃ ⊆ Rv implies equality. Since the intersection R̃∩mv

contains the maximal ideal p̃ of R̃ both ideals must coincide. We will
show below that R̃ is the valuation ring of the p-adic valuation vp of
F . Then any element x ∈ F satisfies

vp(x) ≤ 1 implies v(x) ≤ 1
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since R̃ is contained in Rv, and also vp(x) > 1 implies v(x) > 1 since
1/x is in p̃ and therefore in mv. Hence, both valuation rings indeed
coincide.

We still need to show that R̃ is a valuation ring. We recall that R
is a Dedeking ring. In Section ... we show that every non-zero ideal a

of R is a product of prime ideals and that presentation is unique up to
the order of the factors. For each non-zero prime ideal p of R we can
therefore define a map

νp = ν : R→ Z ∪ {∞} : x 7→
{

∞ for x = 0
m for x 6= 0 , xR = pmq with p - q

which clearly satisfies the axioms of a non-archimedian exponential
valuation. We leave this as an exercise to the reader. The proof is
analogous to that for the p-adic valuations of Z. Extending ν to the
quotient field F of R we obtain the so-called p-adic exponential val-

uation of F .
Hence, we have shown that the non-trivial non-archimedian valua-

tions of F which contain R in their valuation ring are exactly the p-adic
valuations. Those are discrete.

Theorem 1.17. (Weak Approximation Theorem)
Let v1, ..., vn be pairwise inequivalent non-archimedian real valuations
of the global field F and let x1, ..., xn ∈ F . Then for every ε > 0 there
exists an element x ∈ F satisfying vi(x− xi) < ε (1 ≤ i ≤ n).

Since every vi coresponds to a unique prime ideal of R the theorem
coincides with the Chinese Remainder Theorem if the elements xi (1 ≤
i ≤ n) belong to R and R is contained in the valuation rings Rvi

.
Proof The proof is done in 3 steps.

(1) We show by induction on n that F contains an element a with
the properties v1(a) > 1 and vi(a) < 1 (2 ≤ i ≤ n).

We start with n = 2. Because of Rv1
6= Rv2

the valuation
rings cannot be contained in each other (see above) and there
exist elements b, c ∈ F subject to c ∈ Rv1

\ Rv2
, b ∈ Rv2

\ Rv1
.

Then a := b/c satisfies v1(a) > 1 > v2(a). For the induction
step from n − 1 to n we can assume that there exist elements
b, c ∈ F with v1(b) > 1 , vi(b) < 1 (2 ≤ i ≤ n − 1) , v1(c) >
1 , vn(c) < 1.

In case of vn(b) < 1 the element a := bmc does the job for ev-
ery sufficiently large exponent m ∈ N. For vn(b) > 1, however,
we set a := bmc/(1 + bm).
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(2) For every ε > 0 there exists an element b ∈ F satisfying v1(1−
b) < ε , vi(b) < ε (2 ≤ i ≤ n).

We chosse a ∈ F with the properties of (i) and put b :=
am/(1+am) for sufficiently large m ∈ N. Clearly, vi(b) tends to
0 for m→ ∞, and because of

1 − b =
1

1 + am
=

1

am

1

1 + a−m

the same holds for v1(1 − b).
(3) Now we prove the theorem.

Let x1, ..., xn ∈ F be given. We put M := max{vj(xi) | 1 ≤
i, j ≤ n}. According to step (ii) there exist elements b1, ..., bn ∈
F with the properties

vi(1 − bi) <
ε

Mn
, vj(bi) <

ε

Mn
(1 ≤ i, j ≤ n , i 6= j) .

The element x := x1b1 + ...+ xnbn then does what we want:

vi(x− xi) = vi

(

n
∑

j=1

xjbj − xi

)

≤ vi(xibi − xi) +
n
∑

j=1

j 6=i

vi(xjbj)

≤ vi(x)
ε

Mn
+ (n− 1)M

ε

Mn
≤ ε (1 ≤ i ≤ n) .

2

Theorem 1.18. (Strong Approximation Theorem)
Let v1, ..., vn be pairwise inequivalent non-archimedian real valuations
of the global field F and let x1, ..., xn ∈ F . Then for every ε > 0
there exists an element x ∈ F satisfying vi(x − xi) < ε (1 ≤ i ≤ n)
and v(x) ≤ 1 for all non-archimedian valuations of F not belonging to
{v1, ..., vn} but for which the ring of integers R of F is contained in the
valuation ring Rv.

Proof Let us assume that π1, ..., πs are all prime elements of the
base field F0 which are contained in one of the prime ideals pi (1 ≤ i ≤
n) of R belonging to the valuations vi. We enlarge the set {p1, ..., pn}
to M = {p1, ..., pw} with w ≥ n such that M contains all prime ideals
of R containing one of the prime elements π1, ..., πn. We put xi = 1
for i = n + 1, ..., w. According to the preceding theorem there is an
element y ∈ F satisfying vi(x − xi) < ε (1 ≤ i ≤ w). Let y = y1/y2
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with y1, y2 ∈ R and assume that

y2R =

(

w
∏

i=1

pmi

i

)

a

is the prime ideal decomposition of y2R, i.e. a is not contained in any
of the pi. We choose δ, κ ∈ N such that

(1) vi(x) < ε is satisfied for x ∈ F if we have x ∈ pδ
i for 1 ≤ i ≤ w,

(2) ypκ
i ⊆ pδ

i (1 ≤ i ≤ w),

and put

b :=

(

w
∏

i=1

pi

)max(δ,κ)

.

By the Euclidean algorithm in R0 we compute elements k, l ∈ R0

satisfying kN(a) + lN(b) = 1. (We recall that N(a) = (R : a) is
contained in a, hence N(aR) is the product of a and another ideal
of R.) We claim that x := kN(a)y has the properties stated in the
theorem. Because of the choice of a we have v(x) ≤ 1 for all valu-
ations which are not equivalent to a vi (1 ≤ i ≤ w). Because of
x = (1 − lN(b))y we get x − xi = y − xi − lN(b)y and therefore
vi(x− xi) ≤ max{vi(y − xi) , vi(lN(b)y)} ≤ ε for 1 ≤ i ≤ w.

2


