
1. Integral Bases

The arithmetic in global fields bases essentially on the notion of inte-
gral elements. This concept is a generalization of the rational integers
Z. Those can be viewed as the intersection of all valuation rings of Q.
For global function fields this must be replaced adequately since the
intersection of all valuation rings is the field of constants, its quotient
field is not the function field itself.

Definition 1.1. We define as base ring R0 either the rational in-
tegers (number field case) or the polynomial ring Fq[t] (function field
case) and let F0 be its field of quotients. For a finite extension E of
F0 we define oE := Cl(R0, E) (integral closure of R0 in E) as the
intersection of all valuation rings of E containing R0.

We remark that this definition can also be used for function fields
over fields of characteristic zero. Our definition has the advantage that
the integers of global fields automatically form a ring which satisfies
Cl(Cl(R0, E), E) = Cl(R0, E). Moreover, we have the following prop-
erties:
(i) R0 coincides with its integral closure in its quotient field F0 =
Q(R0). One says that R0 is integrally closed. From the preceding
remark we conclude that the integral closure of a ring in a field is in-
tegrally closed.
(ii) Cl(R1, E) ⊆ Cl(R2, E) for R1 ⊆ R2 ⊆ E.

Definition 1.2. An element x is said to be integral over R0 if it is
a zero of a monic polynomial f(t) ∈ R0[t] of positive degree.

Lemma 1.3. Let R be a valuation ring with quotient field F . Then
R is integrally closed.

Proof Let us assume that the element 0 6= x of F is integral over
R. Then it satisfies an equation

xn +
n∑

i=1

aix
n−i = 0 (ai ∈ R) . (1)

If x is not contained in R we have ϕ(x) > 1 for the valuation ϕ belong-
ing to R. But this implies ϕ(aix

n−i) ≤ ϕ(x)n−i < ϕ(x)n for 1 ≤ i ≤ n
with the consequence

ϕ

(
n∑

i=1

aix
n−i

)
< ϕ(x)n

contradicting (1).
2
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Lemma 1.4. The integral elements x of a finite extension E of F0

are exactly the elements of Cl(R0, E).

Proof.
(i) We assume that

xn +
n∑

i=1

aix
n−i = 0 (ai ∈ R0 , 1 ≤ i ≤ n) (2)

for some natural number n. For any non-archimedian valuation v of
E containing R0 in its valuation ring we have v(ai) ≤ 1. Hence, as
a consequence of the strong triangular inequality, v(x) also belongs to
that valuation ring. This proves x ∈ Cl(R0, E).
(ii) We let x ∈ Cl(R0, E) and assume that there is no equation

1 =
n∑

i=1

aix
−i (n ∈ Z>0, ai ∈ R0, 1 ≤ i ≤ n, an 6= 0) .

(This implies x 6= 0, but 0 is obviously integral over any ring. If
x satisfies an equation of that type we can multiply it with xn and
obtain an equation which shows that x is integral over R0.) The non
existence of such an equation shows that

∑∞
i=1 R0x

−i is a proper ideal
of the unital ring R0[x

−1]. It is therefore contained in a maximal ideal
m of that ring. According to the Lemma of Chevalley there exists a
valuation w of E with valuation ring Rw containing R0 and valuation
ideal containing m. This implies w(x) > 1, a contradiction to our
assumption x ∈ Cl(R0, E).

2

The following criterion is useful for testing elements whether they
are integral.

Lemma 1.5. (Kronecker’s Criterion) An element x is integral
over R0 if and only if there exist finitely many non-zero elements ω1, ..., ωn

satisfying x(ω1, ..., ωn) = (ω1, ..., ωn)M with a matrix M ∈ Rn×n
0 .

Proof. Clearly, we can assume that x is non-zero. If x is known to
be a zero of a monic n-th degree polynomial f(t) ∈ R0[t] the powers xm

for m ≥ n can be expressed as linear combinations of 1, x, ..., xn−1 with
coefficients in R0. Hence, the elements ωi = xi−1 (1 ≤ i ≤ n) satisfy
Kronecker’s Criterion. On the other hand, if that criterion is satisfied
the corresponding linear system of equations can be interpreted as an
eigenvalue equation for x. Therefore x is a zero of the characteristic
polynomial det(tIn −M) ∈ R0[t].

2
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With Kronecker’s Criterion it is easy to show that the sum and the
product of two integral elements is integral again. Also, if x is a zero of
a non-constant monic polynomial whose coefficients are integral then
x is integral itself. We leave both tasks as an exercise for the reader.

We note that the algebraic elements over F0 which are R0-integral
form a subring R̄0 of the algebraic closure F̄0.

For computations with the algebraic integers of a finite extension
E of F0 it is important that the ring Cl(R0, E) is a free R0-module.
Hence, fixing a basis, its elements can be represented as vectors of Rn

0

for n = [E : F0]. This is true since R0 is a principal ideal ring. If
the base ring does not have this property (for example, if we consider
relative extensions) such a basis - usually called integral basis - need
not exist. A unital subring S of E which is a free R0-module of rank n
is said to be an R0-order.

For the following we must stipulate that E is separably generated
over F0. In the number field case this is guaranteed, of course. For
function fields in non-zero characteristic this assumption is non-trivial.

Lemma 1.6. Let K be a field of characteristic p with Kp = K. Let F
be a finite extension of the function field K(t) and η a K-transcendental
element of F . Then F is separable over K(η) if and only if η is not in
F p.

Proof. If η belongs to F p there exists an element ξ in F with η =
ξp. Its minimal polynomial over K(η) is therefore mξ/K(η)(t) = tp − η
and ξ is inseparable over K(η).
On the other hand, if F is inseparable over K(η) then we have K(η) ⊆
Fsep ⊂ F and F has degree q := pm over Fsep. The minimal polynomial
of an element α of F over Fsep is of the form

mα/Fsep(t) = tp
l − a (a ∈ Fsep, 0 ≤ l ≤ m)

from which we conclude that F q is contained in Fsep. We will show
that both fields actually coincide which finishes the proof.
We first show that

[F q : K(η)q] = [F : K(η)] . (3)

Let us assume that F is of degree r over K(η). Then we have F =
K(η)ω1 + ... + K(η)ωr for suitable elements ω1, ..., ωr of F . This yields
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F q = K(η)qωq
1 + ... + K(η)qωq

r , hence [F q : K(η)q] ≤ r. The equations

0 =
r∑

i=1

λq
i ω

q
i

=

(
r∑

i=1

λiωi

)q

with coefficients λi ∈ K(η) show that the ωq
i are also K(η)q-linearly

independent.
From our premises we know that Kq = K and obtain K(η)q = K(η0)
for η0 := ηq. The polynomial tq − η0 is irreducible in K(η0)[t] implying
[K(η) : K(η0)] = q. From

[F : F q][F q : K(η)q] = [F : K(η)q] = [F : K(η)][K(η) : K(η)q]

and (3) we finally get

[F : F q] = q .

2

Corollary 1.7. Any finite extension of F0 can be separately gener-
ated.

From now on we therefore assume that E is a separable extension
of degree n of F0. Then we have E = F0(α) with an element α whose
minimal polynomial mα/F0(x) ∈ F0[x] is of degree n. Clearing denom-
inators we obtain amα/F0(x) ∈ R0[x] for a suitable element a ∈ R0.
Multiplication by an−1 and replacement of x by ax yields a monic ir-
reducible polynomial for aα which again generates E over F0 and is
integral over R0. Hence, without loss of generality we can assume that
a generating element of E over F0 is integral over R0.

Clearly, the ring S := R0[α] is a subring of E consisting of R0-
integral elements. It is therefore contained in the maximal order oE :=
Cl(R0, E). S is also an R0-order. We want to show that the same holds
for oE. We note that the trace bilinar form

Tr : E × E : (x, y) 7→ Tr(xy)

is non degenerate. Namely, we have x =
∑n

i=1 ξiα
i−1 , y =

∑n
j=1 ηjα

j−1

and therefore Tr(xy) = (ξ1, ..., ξn)A(η1, ...ηn)tr for the matrix A with
entries aij = Tr(αi+j−1). The determinant of A is easily seen to be of
Vandermonde’s type. It is non zero since the minimal polynomial of α
does not have multiple roots.

We define the dual R0-module for any R0-module S via

S? := {y ∈ E | Tr(xy) ∈ R0 ∀x ∈ S} .
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For any R0-basis τ1, ..., τn of S there exists the dual basis τ ?
1 , ..., τ ?

n

defined by the linear system of equations Tr(τiτ
?
j ) = δij (1 ≤ i, j ≤

n). An easy computation shows that the transformation matrix from
the τ ?

i to the τi has determinant det(A). Because of Cl(R0, E) ⊆ S?

we obtain that Cl(R0, E) is indeed an R0-order and that determinant
gives further information about the maximal order. We note that the
square of the determinant of a transformation matrix from a basis of
CL(R0, E) to a basis of R0[α] divides det(A). That determinant is
also called discriminant of the equation order R0[α]. Similarly, the
discriminant of an R0-order S with basis τ1, ..., τn is defined as the
determinant of the matrix with entries Tr(τiτj) (1 ≤ i, j ≤ n).

Since R0 is a unique factorisation domain (even a Eucliden ring) the
discriminants d(S) of S and dE of oE have unique factorisations up to
units and the index (oF : S) is necessarily a product of primes of R0

whose squares divide d(S) = d(mα).
We therefore let S = {π1, ..., πs} denote the set of primes π of R0

for which π2 divides d(S). For each prime πj we calculate the so-
called πj-maximal overorder Sj of S characterized by the properties
πj 6 |(oF : Sj) and (Sj : S) is a power of πj. Merging the πj-maximal
overorders Sj for j = 1, ..., s finally yields oF .

We still need to develop methods for determining π-maximal over-
orders Λπ of a given order Λ, usually the equation order with which
we start. For this we recall a few important results about unital com-
mutative rings R. The set N consisting of all nilpotent elements of R
is called the nilradical of R. It is easy to see that N is an ideal and
that the nilradical of R/N is zero. We claim that N is the intersection
of all prime ideals of R. Indeed, for x ∈ N a suitable power, say xk,
vanishes. Hence, x belongs to every prime ideal of R. The other direc-
tion is more complicated. We assume that there exists an element x
which is contained in every prime ideal of R but which is not nilpotent.
The set M of all ideals a of R subject to xn 6∈ a ∀n ∈ N is not empty
since it contains the zero ideal. According to Zorn’s lemmaM contains
a maximal element, say p. Obviously, p does not contain x. For all
u, v ∈ R \ p we have p ⊂ p + Ru , p + Rv, hence there exist powers
xk ∈ p+Ru , xl ∈ p+Rv. This yields xk+l ∈ p+Ruv and consequently
uv 6∈ p, i.e. p is a prime ideal not containing x. This contradicts our
assumption.

The intersection of all maximal ideals of R is called the Jacobson
radical JR of R. We claim that an element x ∈ R belongs to JR

precisely, if 1−xy is a unit of R for all y ∈ R. If 1−xy is not a unit, it
belongs to a suitable maximal ideal, say m. For x ∈ JR ⊆ m we obtain
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xy ∈ m and therefore 1 ∈ m, a contradiction. If x is not contained in
some maximal ideal m we have m + Rx = R, hence m + yx = 1 for
appropriate elements m ∈ m , y ∈ R. But then the element 1−yx = m
belongs to m and cannot be a unit.

Lemma 1.8. (Nakayama) Let M be a finitely generated unitary R-
module and a an ideal of R which is contained in the Jacobson radical
of R and satisfies aM = M . Then the module M is trivial.

Proof. We assume that M is non-zero and that u1, ..., un is a
minimal number of generators for M . Because of un ∈ M = aM there
exist elements a1, ..., an ∈ a with un = a1u1 + ... + anun. Since a is
contained in the Jacobson radical of R the element 1− an is a unit of
R and we obtain

un = a1(1− an)−1u1 + ... + an−1(1− an)−1un−1

contrary to our assumption.
2

Lemma 1.9. Let R be an entire noetherian local ring and a a proper
ideal of R. Then we have an+1 ⊂ an for all natural numbers n.

Proof. Let m denote the maximal ideal of R. Clearly, a is con-
tained in m = JR. If we had aan = an we would obtain an = 0 by
Nakayama’s lemma. But a contains non-zero elements, and so does an

since R is entire.
2

Lemma 1.10. Let R be an entire noetherian ring and a a proper
ideal of R. Then we have an+1 ⊂ an for all natural numbers n.

Proof. We apply localisation! Let a be contained in the maximal
ideal p of R. If we had aan = an the same would hold for the ideal

ã = a
R\p . One easily sees that ãn+1 = ããn and the proof is finished by

an application of the preceding lemma.
2

Definition 1.11. Let Λ be a commutative unital ring and a be an
ideal of Λ. We define the a-radical of Λ as the set Ja of all elements
x of Λ for which a suitable power xk belongs to a.

We note that the elements of Ja are exactly the representatives of
the nilpotent residue classes in Λ/a. Hence, Ja is the intersection of all
prime ideals of Λ containing a.

Definition 1.12. Let Λ be an order of our global field F and a
a non-zero ideal of Λ. We define the ring of multipliers of a as
[a/a] := {x ∈ F | xa ⊆ a}.
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It is immediate that [a/a] is a ring containing Λ. Since the ideal a
has an R0-basis the Kronecker criterion tells us that any multiplier of
a is an algebraic integer of F . Hence, the ring of multipliers is itself
an order of F lying between Λ and oF . We apply these concepts in the
following situation.

The ideal a is chosen as πΛ. The corresponding radical JπΛ certainly
contains πΛ and the latter is of index πn in Λ. We want to prove that

JπΛ = {x ∈ Λ | xn ∈ πΛ} . (4)

The successive powers of JπΛ form a strongly decreasing chain of ideals.
Since there is a positive integer, say m, such that the m-th power of
each R0-basis element of JπΛ is in πΛ the nm-th power Jmn

πΛ is contained
in πΛ. This and the usual index estimates yield (4).

The following important lemma is due to Zassenhaus.

Lemma 1.13. Let Λ be an order of F and π be a prime of R0. Then
[JπΛ/JπΛ] is an overorder of Λ. The index ([JπΛ/JπΛ] : Λ) is a power of
π. Especially, Λ is π-maximal precisely if it coincides with [JπΛ/JπΛ].

Proof. Any x ∈ [JπΛ/JπΛ] satisfies xJπΛ ⊆ JπΛ. For π ∈ JπΛ we
obtain xπ ∈ JπΛ ⊆ Λ, hence x ∈ π−1Λ. Therefore we have π−1Λ ⊇
[JπΛ/JπΛ] ⊇ Λ from which the first part of the lemma follows.

Concerning the π-maximality of Λ we assume that Λ is a proper
subset of the π-maximal overorder Λπ and need to show Λ ⊂ [JπΛ/JπΛ].

Let κ be the smallest exponent with πκΛπ ⊆ JπΛ. Since sufficiently
large powers of JπΛ are contained in πΛ there is a smallest natural
number, say µ, with Jµ

πΛΛπ ⊆ JπΛ. In case µ = 1 we obtain Λπ ⊆
[JπΛ/JπΛ], hence equality holds, and we indeed have Λ ⊂ [JπΛ/JπΛ].
In case µ > 1 we have Jµ−1

πΛ Λπ 6⊆ JπΛ. We choose x ∈ Jµ−1
πΛ Λπ \ JπΛ.

Clearly, x belongs to [JπΛ/JπΛ]. Since x2 is in JπΛ a suitable power of
x is in πΛ. In case of x ∈ Λ we had x ∈ JπΛ, a contradiction to the
choice of x.

2

The lemma also provides an algorithm for actually calculating Λπ.
We just need to solve two tasks:

(1) compute the π-radical of an order,
(2) compute the ring of multipliers of that π-radical.

After each step we have either increased the order or we know that the
considered order is already π-maximal.

There are two solutions for the first task depending on whether the
characteristic of Λ/πΛ is larger than n. For a smaller characteristic we
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use linear algebra to determine a basis of the kernel of the homomor-
phism

ϕ : Λ/πΛ → Λ/πΛ : x 7→ xpκ

(5)

where the exponent κ is chosen subject to pκ−1 < n ≤ pκ.
Example The polynomial f(t) = t3 + 17t2 − 2t + 9 ∈ Z[t] is

irreducible with discriminant d(f) = −3253163. We start with the
equation order Λ = Z[ρ] for a zero ρ ∈ C. For the computation of
the corresponding maximal order we need to determine the p-maximal
overorders Λp for p = 3 and p = 5.
All elements of F = Q(ρ) are presented in the form ξ = x1 +x2ρ+x3ρ

2

with a vector of coefficients x = (x1, x2, x3)
tr ∈ Q3. Because of 3 not

being larger than the degree of the extension F/Q we determine the
3-radical J3Λ of Λ via the kernel of ϕ in (5). We note that we can
choose κ = 1 in this case. Upon reducing the coefficients modulo 3 the
images of the basis elements 1, ρ, ρ2 become

1, ρ3 = ρ2 − ρ, ρ6 = −ρ2 + ρ .

Hence, that kernel is of dimension one with generating element ρ2 + ρ.
Computing the Hermite normal form of the 3×4 matrix whose columns
are the vectors of coefficients of that element and of the generators for
3Λ we obtain the basis

α1 = 3, α2 = 3ρ, α3 = ρ2 + ρ

for J3Λ. Next we compute the ring of multipliers T := [J3Λ/J3Λ]. ξ =
x1 + x2ρ + x3ρ

2 belongs to T if and only if the elements ξαi are in J3Λ

for i = 1, 2, 3. We therefore compute matrices Mαi
∈ Z3×3 such that

αi(1, ρ, ρ2) = (α1, α2, α3)Mαi

and obtain

Mα1 =

 1 0 0
0 1 −1
0 0 3

 , Mα2 =

 0 0 −9
1 −1 19
0 3 −51

 , Mα3 =

 0 −3 48
0 6 −105
1 −16 274

 .

Then we apply row reduction to the rows of all 3 matrices. Because
of T ⊆ 1

3
Λ we can add the rows (3 0 0), (0 3 0), (0 0 3) so that the re-

duction is carried out essentially in Z/3Z which keeps the intermediate
entries small. The remaining non–zero rows become

(1 0 0) , (0 1 − 1) , (0 0 3) .

Obviously, a basis for the solution space

{x | (1, ρ, ρ2)x ∈ T}
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is

x1 =

 1
0
0

 , x2 =

 0
1
0

 ,x3 =

 0
1/3
1/3

 .

The result is the 3–maximal overorder of Λ:

Λ3 = [J3Λ/J3Λ] = Z + Zρ + Z
ρ2 + ρ

3
.

We generalize these ideas and describe a method for computing the
ring of multipliers

[a/b] = {ξ ∈ Q(R) | ξb ⊆ a}

for two ideals a = R0α1 + . . . + R0αn and b = R0β1 + . . . + R0βn

of an order R = R0γ1 + . . . + R0γn. We assume that we know the
corresponding transformation matrices Tγ,α and Tγ,β satisfying

(α1, . . . , αn) = (γ1, . . . , γn)Tγ,α

(β1, . . . , βn) = (γ1, . . . , γn)Tγ,β

and that both matrices are upper triangular matrices, more precisely,
that they are in column reduced Hermite normal form.

We represent ξ ∈ [a/b] in the form ξ =
∑n

i=1 xiγi with coefficients
xi ∈ F0. Then the following criterion is immediate:

ξb ⊆ a ⇔ ξβi ∈ a (1 ≤ i ≤ n). (6)

We write

βiξ = βi(γ1, . . . , γn)x

= (γ1, . . . , γn)M̃ix with M̃i ∈ F n×n
0

= (α1, . . . , αn)T−1
γ,αM̃ix .

We put Mi = T−1
γ,αM̃i and note that det(Mi) 6= 0. The condition (6)

now becomes

Mix ∈ Rn×1
0 (1 ≤ i ≤ n) , (7)

or

Γx ∈ Rn2×1
0 (8)

with

Γ =

 M1
...

Mn

 . (9)
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Let b0 be the least common multiple of the denominators of the entries
of Γ. Then

b0Γ ∈ Rn2x n
0

and equation (8) becomes

b0Γx ∈ b0R
n2×1
0 .

Then we compute the (row reduced) Hermite normal form of b0Γ. In
order to avoid the usual growth of intermediate entries we observe the
following.

We let b ∈ b ∩ R0. An element ξ ∈ [a/b] clearly maps b into a ⊆ R.
We therefore know that ξ ∈ 1

b
R or bξ ∈ R. Hence, we extend the

matrix Γ by adding n additional rows representing bIn, In the n × n
unit matrix. In the subsequent Hermite normal form computation of an
(n2+n)×n matrix all entries stay bounded by the size of b, respectively
b0b.

We denote the matrix consisting of the first n rows of the Hermite
normal form of b0Γ by M . Again, M is a regular upper triangular
matrix. Then x ∈ Rn×1

0 satisfies Mix ∈ Rn×1
0 (1 ≤ i ≤ n) if and only

if Mx ∈ b0R
n×1
0 . The vector x is therefore of the form

x = b0M
−1y with y ∈ Rn×1

0 .

It is therefore an R0-linear combination of the columns of the matrix
b0M

−1. Hence, the elements η1, . . . , ηn satisfying

(η1, . . . , ηn) = (γ1, . . . , γn) b0M
−1 (10)

form an R0-basis of [a/b].

For p > n there is a more efficient way of computing the p–radical
of an order Λ.

Proposition 1.14. Let Λ be an order of E. Let π be a prime of R0

and p = π (number field case) or let p denote the characteristic of F0

(function field case). For p > n = [E : F0] we have JπΛ = {x ∈ Λ |
Tr(xy) ∈ πR0 ∀y ∈ Λ}.

Proof. We recall that JπΛ is the intersection of all prime ideals
of Λ containing π, say p1, ..., ps. (We note that there can exist only
finitely many such ideals since the corresponding residue class ring is
finite and therefore admits only finitely many prime ideals.) Let Γ be
the Galois closure of E and choose automorphisms σ1, ..., σn of Γ such
that σi |E (1 ≤ i ≤ n) are the pairwise different embeddings of E
into Γ. For any y ∈ E we have Tr(y) =

∑n
i=1 σi(y). For y ∈ Λ and

x ∈ JπΛ we get xy ∈ JπΛ =
∏s

j=1 pj. Let P1, ...,Pu be all prime ideals
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of Cl(Λ, Γ) containing π. Each of those contains exactly one of the
prime ideals p1, ..., ps. Ordering them adequately, we get

π ∈ pi ⊆ Pij

with

pi ⊆
mi⋂
j=1

Pij

and

{Pij | 1 ≤ ij ≤ mi, 1 ≤ i ≤ s} = {P1, ...,Pu} .

Hence, xy is contained in the product Π :=
∏u

j=1 Pj, too. Since the

automorphisms σi permute the set {P1, ...,Pu} every conjugate σi(xy)
is contained in Π as well. Therefore we obtain Tr(xy) ∈ Π∩R0 = πR0.

On the other hand, every element z of {x ∈ Λ | Tr(xy) ∈ πR0 ∀y ∈
Λ} satisfies Tr(zj) ∈ πR0 for all j ∈ N. Then Newton’s relations
between the traces Si := Tr(zi) and the coefficients (−1)iσi of the
powers tn−i of the characteristic polynomial of z:

k−1∑
i=0

(−1)iσiSk−i + (−1)kkσk = 0 (σ0 := 1 , 0 ≤ k ≤ n)

and
n∑

i=0

(−1)iσiSk−i = 0 (σ0 := 1 , n ≤ k)

tell us that the coefficients of the characteristic polynomial of z are
in πR0, too. (Here we need our assumption p > n.) This has the
consequence zn ∈ πΛ, hence z ∈ JπΛ.

2

Example We continue the example from above, this time com-
puting the 5–radical of Λ = Z[ρ]. Since the trace is Q–linear we need
to determine all x = x1 + x2ρ + x3ρ

2 ∈ Λ satisfying Tr(xρj) ∈ 5Z (j =
0, 1, 2). For this we compute the values

Tr(1) = 3 , (11)

Tr(ρ) = −17 , (12)

Tr(ρ2) = 293 , (13)

Tr(ρ3) = −5042 , (14)

Tr(ρ4) = 86453 . (15)

Again we remark that we only need these values modulo 5. The condi-
tion Tr(xρj) ∈ 5Z (j = 0, 1, 2) amounts to 3x1− 2x2 + 3x3 ≡ 0 mod 5.
Hence, the elements 5, ρ− 1, ρ2 − ρ form a Z–basis of J5Λ.
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For the computation of the ring of multipliers of the π–radical there
is still another method valid only for equation orders. In this case all
elements can be presented via specializations t 7→ ρ of polynomials of
R0[t]. Since we frequently need to switch from polynomials in R0[t] to
their images in (R0/πR0)[t] and vice versa we stipulate that all occuring
polynomials are in R0[t]. The generating polynomial f(t) ∈ R0[t] is
monic and separable. In (R0/πR0)[t] it decomposes into a product of
monic irreducible polynomials pi(t) ∈ R0[t]:

f(t) ≡
s∏

i=1

pi(t)
ei mod πR0[t] . (16)

We note that the pi(t) remain irreducible modulo πR0[t]. Since π2

divides the discriminant of f(t) at least one exponent ei is bigger than
one. For the following we do not even need the last factorisation. We
only need the weaker one

f(t) ≡
s∏

i=1

gi(t)
i mod πR0[t] , (17)

with gi(t) being the product of all pj(t) for which ej equals i. That
last factorisation can be obtained just by calculations of the greatest
common divisors of polynomials and their derivatives and quotients
of polynomials modulo πR0[t] (so-called divisor cascading or factor
refinement). We note that the polynomials gi(t) are pairwise coprime
modulo πR0[t]. We also put

g(t) := q
s∏

i=1

gi(t) ∈ R0[t] . (18)

Lemma 1.15. (Dedekind Test) Let Λ be the equation order R0[ρ]
for a zero ρ of f(t). Then the π–radical of Λ is given by

JπΛ = π Λ + g(ρ) Λ . (19)

Define the polynomial h(t) by

h(t) :=
1

π
(f(t)−

n∏
i=1

gi(t)
i) ∈ R0[t] . (20)

Then the equation order is π–maximal if and only if the greatest com-
mon divisor of the polynomials h(t) and g(t)/g1(t) in (R0/πR0)[t] is
one.
The proof also yields an R0–basis of the ring of multipliers T := [JπΛ/JπΛ]
of the π–radical JπΛ which is useful if T is strictly larger than Λ.
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Proof Since f(t) divides g(t)n modulo πR0[t] we have g(t)n =
f(t)A(t)+πB(t) for appropriate polynomials A(t), B(t) ∈ R0[t]. Hence,
g(ρ)n is in πΛ and therefore g(ρ) in JπΛ. Consequently, the right-hand
side of (19) is contained in JπΛ.

On the other hand, if γ is in JπΛ then it is nilpotent modulo πΛ.
We let A(t) ∈ R0[t] of degree less than n such that γ = A(ρ). By
long division we get A(t)n = q(t)f(t) + r(t) with deg(r) < deg(f) in
R0[t]. Because of A(ρ)n ≡ 0 mod πΛ the polynomial r(t) must be in
πR0[t] and therefore f(t) divides A(t)n modulo πR0[t]. But then also
g(t) divides A(t) modulo πR0[t]. Hence, we get γ + πΛ = (g(ρ) +
πΛ)(k(ρ) + πΛ) for a suitable k(t) ∈ R0[t] and γ is contained in the
right-hand side of (19).
In the remainder of the proof all occuring polynomials Ai(t) are in
R0[t].
The structure of the π–radical immediately tells us that x ∈ F belongs
to the ring of multipliers T := [JπΛ/JπΛ] if and only if xπ and xg(ρ)
both belong to JπΛ. We know that T ⊆ 1

π
Λ. Any element x of 1

π
Λ can

be written as x = A(ρ)/π with a polynomial A(t) ∈ R0[t] of degree less
than n. We will show that such an element belongs to T if and only if
it satisfies the two conditions

(1) The polynomial g(t) divides A(t) modulo πR0[t];
(2) the polynomial H(t)K(t) divides A(t) modulo πR0[t], where

H(t) and K(t) are defined by H(t) ≡ f(t)/g(t) mod πR0[t] and
K(t) ≡ g(t)/ gcd(h(t), g(t)) mod πR0[t] .

The first condition is obviously tantamount to xπ ∈ JπΛ. The sec-
ond is derived from xg(ρ) ∈ JπΛ in the following way. According
to (19) we have xg(ρ) ∈ JπΛ if and only if there exist polynomials
A2(t), A3(t) ∈ R0[t] satisfying A(ρ)g(ρ) = π(πA2(ρ) + g(ρ)A3(ρ)).
Again this is tantamount to

A(t)G(t) = π2A2(t) + πg(t)A3(t) + f(t)A4(t) (21)

with a suitable polynomial A4(t) ∈ R0[t]. This yields

A(t) ≡ A4(t)
f(t)

g(t)
mod πR0[t] ,

and we define H(t) ∈ R0[t] via

H(t) ≡ f(t)/g(t) mod πR0[t] . (22)

Then we have A(t) = A4(t)H(t) + πA5(t). Inserting this into (21) we
get

(g(t)H(t)− f(t))A4(t) = π2A2(t) + πg(t)(A3(t)− A5(t))
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and with the notation of the lemma h(t)A4(t) = πA2(t) + g(t)A6(t).
Since g(t) therefore divides h(t)A4(t) modulo πR0[t] the polynomial
K(t) satisfying

K(t) ≡ g(t)

gcd(h(t), g(t))
mod πR0[t] (23)

divides A4(t) modulo πR0[t]. Hence, we obtain A4(t) = K(t)A7(t) +
πA8(t) and from this also

A(t) = H(t)K(t)A7(t) + π(H(t)A8(t) + A5(t)) .

We conclude that the least common multiple of g(t) and H(t)K(t)
modulo πR0[t] divides A(t) modulo πR0[t]. The following equations
are valid in (R0/πR0)[t]:

lcm (g,HK) = K lcm (gcd(h, g), H) by (23)

=
g

gcd(h, g)

gcd(h, g)H

gcd(h, g, H)

=
f

gcd(h, g, H)

=: U .

Again the polynomial U(t) is assumed to be in R0[t]. It divides A(t)
modulo πR0[t].

We conclude that T coincides with Λ precisely for gcd(h,G,H) ≡
1 mod πR0[t]. With respect to the notation of the lemma we remark
that the greatest common divisor of G and H in (R0/πR0)[t] equals the
polynomial G1(t) :=

∏n
i=2 gi(t) modulo πR0[t]. If the greatest common

divisor of h and G1 modulo πR0[t] is of degree m ≥ 1, however, an
R0–basis of T is given by

1, ρ, ..., ρn−m−1,
1

π
U(ρ), ρ

1

π
U(ρ), ..., ρm−1 1

π
U(ρ) .

For m ≥ 1 the index of Λ in T is therefore πm.
2

Example We continue our example for p = 5. The polynomial
f(t) = t3 + 17t2 − 2t + 9 splits modulo 5 into

f(t) ≡ (t− 1)3 mod 5Z[t] .

We note that in the notation of 17 we have g1(t) = g2(t) = 1 , g3(t) =
(t − 1) = G(t). In Dedekind’s Lemma the polynomial h(t) becomes
h(t) = ((t− 1)3 − f(t))/5 = −(4t2 − t + 2). We easily see that h(t) ≡
(t− 1)(t + 2) mod 5Z[t]. The greatest common divisor modulo 5Z[t] of
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h(t) and g2(t)g3(t) becomes t− 1, the equation order is clearly not 5–
maximal. We compute U(t) = (t−1)2, m = 1 and obtain the following
Z–basis of the ring of multipliers T :

1, ρ, (ρ2 − 2ρ + 1)/5 .

Once we have calculated the π-maximal overorders Sπ for each prime
element π ∈ S = {π1, ..., πs} whose square divides the discriminant
d(S) of the equation order S = R0[α] we still need to merge these
overorders to obtain the maximal order oE of E. Without loss of gen-
erality we assume that S ⊆ Sπ for all π ∈ S. We note that the calcula-
tion of Sπj

(1 ≤ j ≤ s) yields R0-bases τj,1, ..., τj,n via transformation
matrices Tj ∈ Rn×n

0 subject to

(1, α, ..., αn−1) = (τj,1, ..., τj,n) Tj .

The basis of Sπj
is chosen such that Tj = (t

(j)
µν ) is an upper triangular

matrix in row reduced Hermite Normal Form. Because of (Sπj
: S) =

det(Tj) being a power of πj, say

(Sπj
: S) := π

κj

j ,

the diagonal elements of Tj are powers of πj, too. Since with each
element x also αx is in Sπj

we conclude that

t(j)µµ | t
(j)
µ+1,µ+1 (1 ≤ µ < n) ,

respectively, for

t(j)µµ = π
λ
(j)
µ

j

we have
λ

(j)
1 ≤ λ

(j)
2 ≤ · · ·λ(j)

n .

We note that
∏n

µ=1 π
λ
(j)
µ

j = π
κj

j . Because of Sπj
∩R0 = S ∩R0 = R0 we

also have λ
(j)
1 = 0. Setting T−1

j =: (a
(j)
µν ) the basis elements of Sj are

given in the form

τ (j)
µ = π

−λ
(j)
µ

j

(
αµ−1 +

µ−1∑
k=1

a
(j)
kµαk−1

)
(1 ≤ µ ≤ n ; a

(j)
µk ∈ R0) .

We put

cµ :=
s∏

j=1

π
λ
(j)
µ

j

and

c(j)
µ := cµ/π

λ
(j)
µ

j (1 ≤ j ≤ s) .
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Similarly to a proof of the Chinese remainder theorem we determine

elements d
(j)
µ in R0 subject to

1 =
s∑

j=1

c(j)
µ d(j)

µ .

We claim that the elements

ωµ :=
s∑

j=1

d(j)
µ τ (j)

µ (1 ≤ µ ≤ n)

form an R0-basis of oE. Clearly, they belong to oE. It therefore suffices
to show that any element x of oE has a presentation

x =
n∑

ν=1

xνων (xν ∈ R0) .

For this we assume that x belongs to oE ∩
∑µ

ν=1 F0α
ν−1 for a fixed in-

teger µ ∈ {1, ..., n} and show that upon subtracting a suitable multiple
of ωµ yields an element of oE ∩

∑µ−1
ν=1 F0α

ν−1. For the coefficient ξµ of

x =

µ∑
ν=1

ξνα
ν−1 (ξν ∈ F0)

we know that cµξµ ∈ R0. Then we get

x − cµξµωµ = x − cµξµ

s∑
j=1

d(j)
µ τ (j)

µ

= x − cµξµ

s∑
j=1

d(j)
µ

c
(j)
µ

cµ

(
αµ−1 +

µ−1∑
k=1

a
(j)
kµαk−1

)

= x − cµξµ
1

cµ

αµ−1 − y ,

and the element y clearly belongs to oE ∩
∑µ−1

ν=1 F0α
ν−1 . Hence, the

elements ω1, ..., ωn are indeed an R0-basis of oE.

Remark The first basis element ω1 becomes 1 by this construction.

Example In the example previously discussed the equation order
was not maximal for the primes π1 = 3 and π2 = 5. For the πj-maximal

overorders we obtained bases 1, α, α2+α
3

and 1, α, α2−2α+1
5

, respectively.
From this we get c1 = c2 = 1, c3 = 15. It is easily seen that ω1 is

1 and that ω2 is α. To obtain ω3 we calculate c
(1)
3 = 5, c

(2)
3 = 3 and
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d
(1)
3 = −1, d

(2)
3 = 2 and finally

ω3 = −α2 + α

3
+ 2

α2 − 2α + 1

5

=
α2 +−17α + 6

15
.

We note that the coefficient of α in the representation of ω3 can be
modified (by adding ω2) to −2.


