
Dedekind Rings
Remark In principal ideal rings all non-zero prime ideals are max-

imal ideals.
We introduce a few properties on localizations which will be used

later.

Lemma 0.1. If the ring R is noetherian and p is a non-zero prime
ideal of R then also the localization Rp is noetherian.

Proof. Let ã be an ideal of Rp. It is of the form a
R\p with an

ideal a of R. The ideal a is finitely generated, say with generators
ai ∈ R (1 ≤ i ≤ n). Clearly, the same elements generate ã.

2

Lemma 0.2. Let R be a ring with prime ideals p, q subject to p ⊂ q.
Then the corresponding ideals

p̃ =
p

R \ q
, q̃ =

q

R \ q

are prime ideals of Rq satisfying p̃ ⊂ q̃.

Proof. We start to show that prime ideals p of R which are
contained in the prime ideal q satisfy p̃∩R = p from which the second
statement immediately follows. Clearly, we have p ⊆ p̃ ∩ R. On the
other hand, any element of p̃ is of the form π/s with π ∈ p, s ∈ R \ q.
If it is contained in R as well we obtain π = rs for some element
r ∈ R. Since s is not contained in p we must have r = π/s ∈ p, hence,
p̃ ∩R ⊆ p.

Next we show that p̃ is a prime ideal of Rq. If the product of two
elements r/s and u/v of Rq is contained in p̃ we get ru ∈ p, hence either
r ∈ p (with the consequence r/s ∈ p̃) or u ∈ p (with the consequence
u/v ∈ p̃).

Finally, x ∈ q \ p also belongs to q̃ but not to p̃.
2

Lemma 0.3. Let R be a noetherian ring. For every non-zero ideal
a ⊂ R of R there exist prime ideals p1, ..., pr subject to

p1 · · · pr ⊆ a ⊆ p1 ∩ . . . ∩ pr . (1)

Proof Let us assume that the set M of non-zero ideals of a ⊂ R
which do not satisfy (1) is not empty. Since R is noetherianM contains
a maximal element, say a. Since a itself cannot be a prime ideal there

1
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exist elements b, c ∈ R\a with ab ∈ a. We put b := a+Rb, c := a+Rc
and obtain:

a ⊂ b, a ⊂ c, bc ⊆ a, b ⊂ R, c ⊂ R .

(We note that in case b = R we had c = cR = cb ⊆ a, and, analogously,
we conclude for c = R.) From this

bc ⊆ a ⊆ b ∩ c

is immediate. Since b and c do not belong to M they both satisfy (1).
But then also a satisfies 1 in contradiction to a ∈M. 2

Definition 0.4. A unital entire ring R is called a Dedekind ring
if it has the properties

(1) R is noetherian,
(2) R is integrally closed,
(3) in R every non-zero prime ideal is maximal.

In what follows we assume that R is a unital entire ring with quotient
field F . Clearly, the non-zero ideals of R form a multiplicative monoid
with unit element R. In order to obtain a group structure (if R has
additional properties) we need to introduce so-called fractional ideals
since proper ideals 0 6= a ⊂ R cannot have an inverse belonging to R
but only to the full quotient ring F of R which is a field.

Definition 0.5. Any non-zero R-module A in F for which a non-
zero element a ∈ R exists such that aA is an ideal a of R is called a
fractional ideal of R. We denote the set of all fractional ideals of R
by IR or just I.

The usual non-zero ideals of R are also fractional ideals (with de-
nominator 1). They are sometimes called integral ideals. We list
several useful properties of fractional ideals.

• the product, the sum, and the intersection of fractional ideals
belong to I.

To see this we assume that the ideals are given in the form
A = 1

a
a, B = 1

b
b with ideals a, b and elements a, b of R. We

then get

AB =
1

ab
(ab) , A + B =

1

ab
(ba + ab) , A ∩B =

1

ab
(ba ∩ ab) .

• Much more important is the so-called ring of multipliers for
an ideal A ∈ I:

[R/A] := {x ∈ F | xA ⊆ R} ,
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respectively the quotient of two ideals:

[A/B] := {x ∈ F | xB ⊆ A} .

Those elements x satisfy

(ax)b ⊆ ba

so that ax fulfills Kronecker’s condition and is integral. Hence,
one easily sees that [A/B] is indeed a fractional ideal. We
remark that [R/A] equals A−1 in case A is invertible. Because
of A−1A = R we see that A−1 ⊆ [R/A]. On the other hand,
if x ∈ [R/A] satisfies xA ⊆ R and therefore xR = xAA−1 ⊆
RA−1 = A−1.

We note hat the inverse of an ideal is uniquely determined if it exists.
Similarly, for invertible ideals A we have [A/A] = R. Namely, by
definition R is contained in the left-hand side; but x ∈ F satisfying
xA ⊆ A upon multiplication with A−1 also fulfills xR ⊆ R , hence,
x ∈ R.

Lemma 0.6. If an ideal a of R is contained in an integral invertible
ideal m then a is a multiple of m with an ideal of R, namely

a = (am−1)m .

Conversely, if the ideal a is a multiple of an ideal m of R, i.e. a = mb
for an integral ideal b, then a is contained in m.

Proof For a ⊆ m ⊆ R we get am−1 ⊆ mm−1 = R ⊆ m−1. (The
same applies to proper containment.)
For the second statement, we conclude via a = mb ⊆ mR = m.

2

Corollary 0.7. If an integral ideal a of R is properly contained in a
maximal ideal m which is invertible then

a = (am−1)m .

and am−1 is an ideal of R properly containing a.

Proof We only need to show that

am−1 = a , respectively a = am (2)

is impossible. If the ring R is local then m coincides with the Jacobson
radical of R and Nakayama’s Lemma tells us that (2) implies a = 0
contrary to our assumption.

If R is not local we apply localisation with respect to m. We let

R̃ =
R

R \m
m̃ =

m

R \m
, ã =

a

R \m
.
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Again, m̃ is the Jacobson radical of R̃ and we get

ã = R̃a = R̃am = R̃aR̃m = ãm̃ .

According to Nakayama’s Lemma the ideal ã, and therefore also the
ideal a, is zero.

2

As a consequence of the proof we see that a non-zero prime ideal
p which is contained in an invertible maximal ideal m necessarily co-
incides with m. If every non-zero ideal of R is invertible then every
non-zero prime ideal of R is maximal.

We show that R is also noetherian and integrally closed in that case.
If the ideal a satisfies aa−1 = R we have an equation

n∑
i=1

aibi = 1

with elements ai ∈ a, bi ∈ a−1 and get

1 ∈

(
n∑

i=1

aiR

)
a−1 ⊆ aa−1 = R ,

hence
n∑

i=1

aiR = a .

Is an element x ∈ F \R is integral over R then it satisfies an equation

xn + a1x
n−1 + ... + an−1x + an = 0 (ai ∈ R) .

The fractional ideal

a :=
n−1∑
i=0

xiR

then satisfies the Kronecker condition xa ⊆ a which implies xR =
xaa−1 ⊆ aa−1 = R, hence x ∈ R follows.

Subsequently we derive several criteria for rings to be of Dedekind
type.

Theorem 0.8. For unital entire rings R the following conditions are
equivalent:

(1) R is a Dedekind ring.
(2) The fractional ideals of R form a group.
(3) Every non-zero ideal a of R is a product of non-zero prime

ideals.
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Proof The proof of this important theorem is rather lengthy. We
have already seen that (2) implies (1).

(1) ⇒ (2) and (3)
Let a be a non-zero ideal of the Dedekind ring R. If a has a mul-

tiplicative inverse it is necessarily [R/a]. Obviously, [R/a]a ⊆ R and
we need to show equality. We assume that the set of non-zero non-
invertible ideals of R is non-empty. Since R is noetherian that set
contains a maximal element, say a. We will show below that a is a
product of prime ideals. We therefore only need to show the invertibil-
ity of prime ideals (respectively, maximal ideals).

Let a be a maximal ideal of R. Because of

a = aR ⊆ a[R/a] ⊆ R

we either have a = a[R/a] or a[R/a] = R. We just need to exclude the
first possibility.

Let us therefore assume a = a[R/a].
Since R is noetherian the ideal a is finitely generated, say a = Ra1 +
... + Ran. For any element x ∈ [R/a] we get

x(a1, ..., an) = (a1, ..., an)Mx

with a matrix Mx ∈ Rn×n. This is a Kronecker condition for x, hence
the element x is integral over R and therefore belongs to R. It remains
to show the existence of an element x ∈ [R/a] \R.

For this we let 0 6= π ∈ a. According to 0.3 the ideal πR contains a
product of non-zero prime ideals. Among all those products contained
in πR we choose one with a minimal number of factors, say p1 · · · ps.
Then we have

p1 · · · ps ⊆ πR ⊆ a

and
s∏

i=1
i6=j

pi 6⊆ πR (1 ≤ j ≤ s) .

Since a is a maximal ideal one of the factors pj must be contained in a.
Reordering the pi suitably we can assume that p1 ⊆ a, hence p1 = a.
This implies

1

π

s∏
i=2

pi 6⊆ R

but
1

π

s∏
i=s

pi ⊆ R ,
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and therefore
1

π

s∏
i=2

pi ⊆ [R/p1] = [R/a] .

This shows the existence of an element x ∈ 1
π

∏s
i=2 pi \ R which belongs

to [R/a].

Now, we can prove that every ideal 0 6= a of R is a product of prime
ideals. Let us assume that there exists an ideal which is not a product
of prime ideals. According to 0.3 there exist prime ideals p1, . . . , pk

subject to

p1 · · · pk ⊂ a ⊆ p1 ∩ · · · ∩ pk .

Moreover, we assume that a is chosen such that k is minimal. For k = 1
we get p1 ⊂ a, hence a = R, a contradiction. For k > 1 we already
know that p1 is invertible and obtain

p1 · · · pk ⊂ p−1
1 a ⊂ p−1

1 p1 = R .

(In case p−1
1 a = p−1

1 p1 we had a = p1.) This implies that p−1a is an
ideal of R which contains a product of prime ideals with a smaller
number of factors than a. Hence, p−1

1 a is a product of prime ideals and
therefore also a = p1(p

−1
1 a).

Remark We also show that such a representation is unique up to
the order of the factors. This will be needed later.

Let us assume that the ideal a of R has two representations

p1 · · · pr = q1 · · · qs

with ideals of PR. Since p1 divides the right-hand side it must be
contained in one of the factors qj. Reordering the factors suitably we
can assume that p1 ⊆ q1. Since we showed that non-zero prime ideals
in rings with property (ii) are maximal we get p1 = q1. Multiplying
the equation by p−1

1 we get

p2 · · · pr = q2 · · · qs .

A repeated application of this procedure eventually yields r = s and
pi = qi for 1 ≤ i ≤ r.

To finish the proof of the theorem we will also show (3) ⇒ (2). We
remark, however, that this is merely of theoretical interest and will not
be needed furthermore.

(3) ⇒ (2)
We prove the statement via several reduction steps.
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(i) Since every non-zero ideal of R is a product of prime ideals it
suffices to prove that all non-zero prime ideals of R are invertible.

(ii) Let p be a non-zero prime ideal of R. It contains an element
0 6= π ∈ p. Then Rπ is a product of prime ideals, say p1, ..., pr, each of
which is invertible according to

p−1
i =

1

π

r∏
j=1
j 6=i

pj .

On the other hand, πR and therefore p1 · · · pr is contained in p. Hence,
one of the factors of that product must be contained in p. By reordering
the pi if necessary we can assume that p1 ⊆ p. If we can show that p1

is maximal we are done.
(iii) We want to show that p1 + Rx = R for all elements x ∈ R \ p1.

For this we choose π ∈ p1 arbitrarily. We assume that

(p1 + Rx)2 = p1 + rx2 (3)

which we shall prove in the next paragraph. Then we obtain

π ∈ p1 + Rx2 = (p1 + Rx)2 = p2
1 + xp1 + Rx2 ⊆ p2

1 + Rx .
(4)

Hence, there exist elements q ∈ p2
1, r ∈ R satisfying π = q + rx. Then

rx = π − q is in p1 and since p1 is a prime ideal we must have r ∈ p1

implying p1 ⊆ p2
1 + xp1. We recall that the prime ideal p1 was shown

to be invertible. Therefore we get

R = p1p
−1
1 ⊆ (p2

1 + xp1)p
−1
1 ⊆ p1 + xR ⊆ R .

Hence, the ideal p1 is maximal. It must coincide with p which is there-
fore invertible what we wanted to show.

(iv) Let p1 be a prime ideal and x ∈ R \ p1. We still need to show
that

(p1 + Rx)2 = p1 + rx2 .

The ideals p1 + Rxi (i = 1, 2) can be presented as products of prime
ideals in the form

p1 + Rxi =
m∏

j=1

q
mij

j (mij ∈ Z≥0 , m1j + m2j > 0) .

We apply the residue class map : R → R/p1 =: R to these presenta-
tions and obtain

xiR =
m∏

j=1

q
mij

j .
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As above we conclude that all ideals qj are invertible. We already know
that a presentation of an ideal by a product of invertible prime ideals
is unique up to the order of the factors. This has the consequence
2m1j = m2j and concludes the proof.

2

We list two consequences of that theorem which will be needed in
a valuation theoretic characterisation of Dedekind rings in the next
theorem.

Lemma 0.9. A local Dedekind ring R is a principal ideal domain
and a discrete valuation ring.

Proof. Let p be the maximal ideal of R. We choose π ∈ p \ p2.
Then πR = pa for some ideal a of R. If a is a proper ideal of R
it is contained in the only maximal ideal p. But this would imply
π ∈ p2, a contradiction. Hence, a equals R and the maximal ideal p
is a principal ideal. The corresponding exponential valuation η is a
discrete valuation with valuation ring R. If a is a non-zero ideal of R
it contains an element a subject to η(a) = min{η(x) | 0 6= x ∈ a}. As
above we conclude that a = (Rπ)η(a).

2

Lemma 0.10. Let R be a unital commutative ring and p be a non-
zero prime ideal of R. If p is contained in a maximal ideal m of R for
which the localisation Rm is a discrete valuation ring then p equals m.

Proof. In the localisation Rm the ideal Rmp is a prime ideal
which is contained in the maximal ideal Rmm. Because of the preceding
lemma both ideals coincide. We obtain

m = Rmm ∩R = Rmp ∩R ⊆ p

R \ p
∩R = p ,

so that p and m indeed coincide.
2

Theorem 0.11. For unital entire rings R the following conditions
are equivalent:

(1) R is a Dedekind ring.
(2) For every maximal ideal m of R the localization Rm is a discrete

valuation ring and every non-zero element a ∈ R is contained
in at most finitely many maximal ideals of R.

(1) ⇒ (2)
At first we show that every a ∈ R \ 0 is contained in at most finitely

many maximal ideals. Again we use that prime ideals are maximal.
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Because of the previous theorem the principal ideal aR is a product
of finitely many prime ideals of R and we also showed that such a
representation is unique. If a is contained in a maximal ideal m then
we get aR = m(aRm−1), hence m occurs in the prime ideal product
representation of aR. This restricts m to a finite set.

For a proof of the first statement we again note that all prime ideals
are maximal.

Since R is noetherian every localisation Rp of R is noetherian, too,
as we saw in 0.1.

Next we prove that for every non-zero prime ideal p of R the local-
isation Rp is integrally closed. If x ∈ Q(R) is integral over Rp then it
satisfies an equation

xn +
n∑

i=1

aix
n−i = 0 (ai =

ri

si

with ri ∈ R , si ∈ R \ p) .

Setting s = s1 · · · sn we see that sx is integral over R. Hence, we get
sx ∈ R and x ∈ Rp.

If q̃ = q
R\p is a non-zero prime ideal of Rp then we must have q̃ ⊆ pRp

and q̃∩R ⊆ p. Since q = q̃∩R is a prime ideal of (the Dedekind ring)
R we obtain q = p, hence q̃ = qRp = pRp. Therefore every prime ideal
of Rp is maximal.

Thus we have shown that Rp is a (local) Dedekind ring. By 0.9 it
is therefore a discrete valuation ring. We fix a maximal ideal m of R.
Then we get the map

νm : R → Z ∪ {∞} :

{
0

0 6= x

}
7→
{
∞
νm

}
if (0) 6= xR = mνm(xR)q and m does not divide q. Since the representa-
tion of ideals from I as products of prime ideals is unique this is indeed
a map and it is easily seen that νm is even an exponential valuation on
R. Extending it to the quotient field F we get a discrete valuation on
F . Clearly, the corresponding valuation ring Rν contains Rp. But any
x 6∈ Rp has a νm- value larger than one and can therefore not belong to
Rm.

(2) ⇒ (1)
We start to show that R is noetherian. Let a be a non-zero ideal of R

and 0 6= a ∈ a. Let m1, ...,mr be all maximal ideals of R which contain
a. In the corresponding discrete valuation rings Rmi

(1 ≤ i ≤ r) the
ideal aRmi

is principal according to 0.9. We can choose an element ai ∈
a as generator (compare 0.1). Then the ideal b := Ra+Ra1 + ...+Rar
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is contained in a. We will show that both ideals coincide. For this let
m be an arbitrary maximal ideal of R.

It satisfies aRm = bRm. For m ∈ {m1, ...,mr} this follows from
aRmi

= aiRmi
⊆ bRmi

⊆ aRmi
. If m does not contain a, however, we

get a−1 ∈ Rm, hence bRm 3 1 and therefore Rm ⊇ aRm ⊇ bRm ⊇ Rm.
For x ∈ a we obtain xRm ⊆ bRm, hence x = u

v
with elements u ∈ b

and v ∈ R \ m. The set B := {y ∈ R | yx ∈ b} is an ideal of R which
contains v and is therefore not contained in m. Since m was chosen
arbitrarily the non-zero ideal B is not contained in any maximal ideal
of R, it must therefore coincide with R. This implies 1 ∈ B and x ∈ b.

Because of 0.10 every non-zero prime ideal p of R is maximal.
We still need to show that R is integrally closed. Clearly, we have

R ⊆
⋂

m max

Rm .

We want to prove equality. Let x be in the intersection of the discrete
valuation rings Rm. For each maximal ideal m we can write x = um

vm
with

elements um ∈ R, vm ∈ R \m. We put B := {y ∈ R | yx ∈ R}. Clearly,
B is an ideal of R which contains vm. It is therefore not contained in m.
Consequently, B is not contained in any maximal ideal of R, it must
therefore coincide with R. This implies 1 ∈ B and x ∈ R.

Finally, Lemma 1.3 of the section “Integral Bases” tells us that val-
uation rings are integrally closed. An element x ∈ R which is integral
over R is a priori integral over any valuation ring containing R. It
therefore belongs to all those valuation rings and consequently to their
intersection R.

2

In the remainder of this section we consider the consequences which
the concept of a Dedekind ring yields for global fields. We therefore
assume that F0 is either the rational number field Q (number field
case) or a rational function field in one variable T over a finite field
Fq (function field case)with Euclidean subrings oF0 = Z, Fq[T ], re-
spectively. Let E be a finite extension of F0 of degree n. We always
assume that E/F0 is separately generated, i.e. E = F0(ρ) for a suit-
able oF0–integral element ρ ∈ F̄0. This is guaranteed in the number
field case and it can also be achieved in the function field case by an
appropriate choice of the rational function field. Then the integral clo-
sure oE = Cl(oF0 , E) is a Dedekind ring. By definition it is integrally
closed. Every non-zero prime ideal p of oE is maximal since the residue
class ring oE/p is a finite entire ring, hence a field. To see hat the ring
oE is also noetherian is a little more complicated. Clearly, we have
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oF0 [ρ] ⊆ oE ⊆ o#
F0

[ρ] where o#
F0

[ρ] is the dual of the free oF0–module
oF0 [ρ] with respect to the trace bilinear form

Tr : E × E → F0 : (x, y) 7→ TrE/F0(xy)

which is non–degenerate according to our separability assumption. Since
o#

F0
[ρ] has an oF0–basis (the dual basis to 1, ρ, ..., ρn−1 with respect to

Tr) and oF0 is a principal entire ring it follows that oE and every non-
zero ideal of that ring have oF0–bases of n elements. We note that
these considerations do not remain valid if we consider relative exten-
sions E/F whence oF is not a principal ideal ring.

We denote the set of all non-zero prime ideals of oE by PE. Since
oE is a Dedekind ring every fractional ideal a is a (unique) product of
prime ideals. Every such ideal has an oF0–basis of n elements. On the
other hand, over oE we can generate it by just two elements.

Lemma 0.12. Let a be an integral ideal of oE and 0 6= a ∈ a ar-
bitrary. Then there exists α ∈ a such that a is the greatest common
divisor of two principal ideals:

a = aoE + αoE .

Proof. Let a =
∏k

p∈PE
pνp(a) be the prime ideal decomposition

of a. We note that almost all exponents are zero. Likewise, we have
aoE =

∏k
p∈PE

pνp(a) with νp(a) ≥ νp(a). By S we denote the finite subset

of PE of those prime ideals p with νp(a) > 0 and by T the finite subset
of PE with 0 = νp(a) < νp(a). We choose elements αp ∈ pνp(a) \ pνp(a)+1

for all p ∈ S. By the Chinese Remainder Theorem there exists α ∈ oE

subject to α ≡ αp mod pνp(a)+1 for all p ∈ S and α ≡ 1 mod p for all
p ∈ T . It is easy to see that the greatest common divisor of aoE and
of αoE equals a.

2

Definition 0.13. For integral ideals a of oE we define their index
as the oF0–module index (oE : a). In the number field case this is a
positive integer which is also said to be the norm N(a) of a. In the
function field case the index is a monic polynomial of oF0 [T ] and we
put N(a) := qdeg(oE :a) .

We remark that the norm of an ideal a is just the determinant of a
transformation matrix of a basis of oE to a basis of a in Hermite normal
form.

We will show that the norm is a multiplicative function.

Lemma 0.14. We have N(ab) = N(a)N(b) for any two integral
ideals a, b of oE.
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Proof. Since the considered ideals are power products of prime
ideals it suffices to show that

N

(
k∏

i=1

pmi
i

)
=

k∏
i=1

N(p)mi

for pairwise different prime ideals pi ∈ PE and positive exponents mi.
We will do this in two steps. The first one is elementary. Namely,

N

(
k∏

i=1

pmi
i

)
=

k∏
i=1

N(pmi)

is just a consequence of the Chinese Remainder Theorem stating that

oE/
k∏

i=1

pmi
i

is isomorphic to the direct product

k∏
i=1

oE/pmi
i .

The Dedekind property of oE is only reqired for the second step. In
order to prove that N(pm) = N(p)m holds for prime ideals it suffices
to show that the oF0–modules oE/p and pm−1/pm are isomorphic for
m ≥ 2. We choose an element π ∈ p\p2 and introduce the oF0–module
homomorphism

ϕ : oE → pm−1/pm : x 7→ xπm−1 + pm .

The kernel of ϕ equals p. It remains to show that ϕ is also surjective.
For this we let y ∈ pm−1. Because of πm−1oE + pm = pm−1 there exists
an element z ∈ oE such that the residue classes πm−1z +pm and y +pm

coincide, hence y = ϕ(z).
2

Examples

(1) Let R = R0[
√

d] be a quadratic order, i.e. d ∈ R0 is not a
square. We will discuss the form of R0–bases of non-zero ideals
a of R. In general, they are given by a transformation matrix
A in column reduced Hermite normal form:

(α1, α2) = (1,
√

d) A with A =

(
a b
0 c

)
∈ R2×2

0 and ac > 0 .
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Clearly, a = R0α1 + R0α2 is a free R0-module of rank 2. The
ideal property of a additionally requires Ra ⊆ a which is tan-
tamount to

√
dα1,

√
dα2 ∈ a. We obtain as necessary and suffi-

cient conditions:

c | a , c | b , a | (cd− b2/c) . (5)

(2) We consider the subring R = Z[
√

5] of the maximal order oE =

Z[1+
√

5
2

] of E = Q(
√

5). The Z-module p := Z1+(1+
√

5)Z has
index 2 in R. Because of (5) p is an ideal of R, and therefore
it is a maximal ideal of R. However, some easy computations
show that N(p)2 = 22 6= 8 = N(p2).

This shows the predominant role of the maximal order of a global
field. On the other hand, we must usually start with the suborder
R = Z[ρ] of the maximal order oE of E = Q(ρ) in which arithmetic
is easier in general. We would therefore like to have a transfer from
the maximal ideals of R to those of oE for as many maximal ideals as
possible. Fortunately, the set of those is easy to characterize.

Definition 0.15. Let R ⊆ S be orders of E. The subset

FS,R := {x ∈ R | xS ⊆ R}

is called the conductor of R in S. If R,S are fixed we just write F
for the conductor.

Remarks It is easily seen that F is an ideal of R as well as of
S. Namely, for x, y ∈ F and r ∈ R , s ∈ S we get xS, yS ⊆ R and
therefore (x− y)S, rxS, sxS = x(sS) are all subsets of R. Hence, the
elements x− y, rx, sx belong to F. If D denotes the determinant of a
transformation matrix of an R0–basis of S to an R0–basis of R then DS
is an ideal contained in F. The same holds for the largest elementary
divisor of such a matrix.

We want to study the relations between the non-zero ideals of S and
those of R in greater detail.

Lemma 0.16. Let R be a suborder of S of conductor F. Then

DS := {A | 0 6= A ideal of S with A + F = S}

and

DR := {a | 0 6= a ideal of R with a + F = R}
satisfy:

(1) DS and DR are multiplicative monoids.
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(2) κ : DR → DS : a 7→ aS is an isomorphism. Its inverse is
κ−1 : DS → DR : A 7→ A ∩R.

(3) For any A ∈ DS the residue class rings S/A and R/A ∩ R are
isomorphic.

Proof. (1) Clearly, the multiplication of ideals of a ring is asso-
ciative. For A + F = B + F = S we also obtain S = (A + F)(B + F) ⊆
AB + F ⊆ S. Hence, we get AB ∈ DS. (For DR the proof is analo-
gous.) The units of DS, DR are S, R, respectively.
(2) From algebra we recall that ideals a, b, c of a unital ring satisfy
a ∩ b + a ∩ c ⊆ a ∩ (b + c). Equality holds in case b ⊆ a or c ⊆ a. We
will also use ab = a ∩ b in case a + b = R.
For establishing an isomorphism between DR and DS we introduce the
mapping

κ : DR → DS : a 7→ Sa .

For any a ∈ DR the image κ(a) is an ideal of S. Because of Sa + F =
S(a+F) = SR = S it belongs to DS. Clearly, we have κ(ab) = κ(a)κ(b)
so that κ is a homomorphism.
Next we prove that κ is injective. For this it suffices to show that the
intersection of κ(a) with R is a. We conclude as follows:

a ⊆ Sa ∩R

= Sa ∩ (a + F)

= Sa ∩ a + Sa ∩ F

= a + SaF

= a + aF

= a .

For proving the surjectivity of κ we choose an arbitrary ideal A ∈ DS.
Intersecting S = A+F with R we get R = R∩(A+F) = R∩A+R∩F =
R∩A+F and the ideal R∩A is in DR. All we need to show is therefore
S(R ∩ A) = A:

A = AR

= A(R ∩ A + F)

= A(R ∩ A) + AF

= A(R ∩ A) + A ∩ F

= A(R ∩ A) + R ∩ A ∩ F

= A(R ∩ A) + (R ∩ A)F

= (A + F)(R ∩ A)

= S(R ∩ A) .
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(3) For an ideal A ∈ DS we consider the map

ϕ : R → S/A : r 7→ r + A .

ϕ is clearly a ring homomorphism with kernel R ∩A. We show that ϕ
is also surjective. For this let s be an arbitrary element of S = A + F.
Hence, there are elements a ∈ A and f ∈ F ⊆ R with s = a + f . This
yields s + A = f + A = ϕ(f). Then the homomorphism theorem for
rings states

S/A ∼= R/ker(ϕ) .

2

If the superorder S of R is maximal then all ideals of DS are invert-
ible. In that case we get the following corollary.

Corollary 0.17. If R is a suborder of the maximal order oE of E of
conductor F the semigroups DE := DoE

, DR of the previous lemma
satisfy:

(1) Every ideal a ∈ DR is a product of maximal ideals of R and the
multiplicity of each maximal ideal in that product is uniquely
determined.

(2) DL, DR are monoids with cancellation law: ac = bc yields a = b
in DR, and similarly in DE.

Proof

(1) Any ideal A of DE has a unique presentation as a product of
prime ideals of oE, say

A =
r∏

i=1

Pei
i . (6)

Applying κ−1 to this equation yields

a := A ∩R = κ−1(A) =
r∏

i=1

(κ−1(Pi))
ei . (7)

Since every prime ideal Pi is a maximal ideal of oE we conclude
from part (3) of the preceding lemma that all ideals κ−1(Pi) =
Pi ∩R are maximal ideals of R. Eventually the presentation in
(7) is unique since that in (6) is unique and κ is an isomorphism.

(2) The cancellation law in DE holds since oE is a Dedekind ring,
every non-zero ideal has a multiplicative inverse. The cancella-
tion law for DR then is a consequence of the first part of this
corollary.
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2

The relation between ideals of a suborder R and the maximal order
oE will now be used to exhibit the decomposition of primes in a finite
separable extension. Let us assume that E/F is a finite separable
extension of degree n. As a generator of E over F we choose a zero ρ of
a monic polynomial of degree n, say f(t) = tn+a1t

n−1+...+an−1+an ∈
oF [t]. Then the ideal decomposition of the ideal pR of a prime ideal p of
oF in R = oF [ρ] can be obtained from a modulo p factorisation of f(t).
By the preceding corollary that can be lifted to a decomposition of poE

for those ideals pR which are comaximal to the conductor F = FoE ,R.
For this we consider the ring epimorphism

: oF [t] → oF /poF [t] :
m∑

i=0

git
i 7→

m∑
i=o

(gi + p)ti

which is used for the introduction of the map

Φ : R → oF [t]/f(t)oF [t] : g(ρ) =
m∑

i=0

giρ
i 7→ (g(t) + f(t)oF [t]) .

We note that the representation of an element of R as a polynomial in
ρ with coefficients in oF is not unique (if we do not demand that the
degree of that polynomial is less than n). Hnece, we need to show that
Φ is well defined. Since f(t) is the minimal polynomial of ρ over oF

two representations of an element x ∈ R in the form g(ρ) = h(ρ) with
polynomials g, h ∈ oF [t] imply that f(t) divides the difference g(t) −
h(t). But then also f(t) divides g(t) − h(t) and we obtain Φ(g(ρ)) =
Φ(h(ρ)). It is easy to see that Φ is a surjective ring homomorphism.
Its kernel is

ker(Φ) = {g(ρ) ∈ R | f(t) | g(t)} .

We have already noted that each x ∈ R can be presented in the form
x = g(ρ) with a polynomial g(t) ∈ oF [t] of degree deg(g) < n. Because
of deg(f) = n we obtain

ker(Φ) = {g(ρ) ∈ R | g(t) = 0} = pR .

The isomorphism theorem for rings yields that R/pR and oF [t]/f(t)oF [t]
are isomorphic.

If we assume that the ideal pR is comaximal to the conductor F of
R in oE then pR is a product of maximal ideals of R containing pR.
Those maximal ideals are in 1 − 1−correspondence with the maximal
ideals of R/pR and the latter with those of oF [t]/f(t)oF [t] by the iso-
morphism we just established.
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The maximal ideals of oF [t]/f(t)oF [t] are principal ideals whose gen-
erators are therefore monic irreducible polynomials. Let us assume
that that the image f(t) of the monic polynomial f(t) ∈ oF [t] in oF [t]
decomposes into

f(t) =

g∏
i=1

f i(t)
ei

with monic polynomials fi(t) ∈ oF [t] for which the f i(t) remain irre-
ducible in oF [t]. Then the maximal ideals of oF [t]/f(t)oF [t] are the g
principal ideals with generators

f i(t) + f(t)oF [t] (1 ≤ i ≤ g) .

From this we conclude that there exist exactly g maximal ideals in
R/pR which are principal with generators

fi(ρ) + pR .

Finally, the maximal ideals of R containing p are

fi(ρ)R + pR

and the maximal ideals of oE containing p are

fi(ρ)oE + poE (1 ≤ i ≤ g) .

Thus we proved the first part of the following theorem.


