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1. Prolog

I know Michael since nearly 30 years. He visited the Lajos Kos-
suth University Debrecen at the first time in 1979. My university
had a computer and mathematics students had to learn to write
programs, but the idea to apply computers to solve number the-
oretical problems was for me new and fascinating.

As a Student of Kalman Gyory I just learned A. Bakers's method.
It serves effective upper bound for many diophantine problems,
but the bounds were astronomic even for very simple questions.



Consider for example the cubes in the Fibonacci sequence, i.e.
the equation

I was able to prove n < 10°9 with Baker's theory and asked
Michael whether it is possible to test the remaining finitely many
cases. You see his answer in the next slides.
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I realized nearly in the same time a sieve method, which enabled
me to compute all cubes and later the fifth powers. Im 2003
proved Bugeaud, Mignotte and Siksek, that 0,1,8 and 144 are
the only perfect powers in the Fibonacci sequence.



2. Thue Equations

T he connection between units and Diophantine equations better
to understand consider the Thue equations.

Let F(xz,y) € Z[x,y] of degree n > 3, irreducible over Qlz,y].
Assume that the coefficient of =™ is one. Let 0 #m € Z, then

F(x,y) =m (1)
iIs a Thue equation.

In Clz,y] we can factorize F(x,y) = [[l_1(z — a(Dy).

Let a = o(1) and K = Q(«) then we can rewrite (1) in the form

[T (= — ay) = Ng gz — ay) =m. (2)
1=1



The element x — ay has Norm m and belongs to M = Z[«a] C Zk.

e Denote O, the coefficient ring of M, i.e.
OMZ{)\I)\MQM}.

e Denote Ej; the group of units of infinite order of Oy,

and e1,...,er a system of fundamental units of Ejy.

e Let A a maximal set of non-associated elements of M with
Norm m. The set A is finite. Then

Theorem 1. Let x,y € Z a solution of (1). Then there exist a
uwe A and uy,...,ur € Z such that

B =x—ay = pue,

— U1 (7
where e = e ---&,".



Considering conjugates we get the system of equations

ﬁ(z) — r — a(z)y = N(Z)8(2)7 — 1, ..., T

Choosing 1 < j <k < h <n we obtain the Siegel's relations:
(a(j)_a(k))u(h)g(h)_l_(a(h)_a(j))u(k)g(k)_|_(a(k)_a(h))ﬂ(j)g(j) — 0.

Division by (a{®) — (k) (1)) £ 0 implies the unit equation

A1E1 4+ AsE> =1, (3)
where
(oM — (k) 1 (5)’ sgj) 87(;)
and

) (o — a@)u® o () Uy RO
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Choosing k such that |az—oz(k>y| = MiNj<;<n |:c—oz(’5)y|, we obtain
after some computation

(h) (h)
log A1 + uq l0g 61— + -+ urlog 57,_ + upy12mi| < c1 exp(—cU),
egy) €?§J)
(4)
with U = max{|u1|, ..., |ur|}.

Here is u,41 = 0, if A; and Eq are real.
A. Baker combined this inequality with his theorem of linear
forms and proved

U S C(nama DK))

which implies max{|z|, |y|} < C’ nearly immediately.



For given F'(x,y) and m we need the following data to solve
completely equation (1):

a. A fundamental system of units of Ej; or of Ey.

b. The elements of A, i.e. a maximal system of non-associated

elements with norm m.
Cc. The solutions of the inequality (4).



3. Units

At the International Conference on Number Theory in 1981 in
Budapest delivered Michael a talk with title: On constructive
methods in algebraic number theory. We cite from his paper of
the Proceedings of this meeting:

Over the past ten years the application of computers to problems
of algebraic number theory has rapidly increased. Especially the
explicit computation of invariants of arbitrary algebraic number
fields ¥ requires the use of electronic calculators in most cases.



Hence, the four fundamental tasks of constructive number the-
ory are to develop efficient algorithms

e for determining the Galois group of F,

e a Z-basis for the integers of F,

e a system of fundamental units of F,

e and a set of representatives of the ideal classes of F.

In this paper we desribe a new combined procedure for the com-
putation of the unit group and the class group.”

Details were published in 1982 in Math. Comp. in two papers.
To compute unit group and class group simultanously were used
afterward in most of the later methods. They differ basically in
the generation of sufficiently many algebraic integers or ideals
with bounded norm.



He wrote later: A computer program of our method for funda-
mental units written in FORTRAN is already operating at the
University of Cologne, a suitable supplement for the computation
of the class group and related problems is planned. We note that
the application of that program to "arbitrary’” number fields is
limited by the fact that all calculations are carried out in single
precision (14 decimal digits). Also the field degree should be less
than 10 because of computation time.



Hence, at the beginning of the 80's there were available a pro-
gram to compute a basis of the unit group. But how to solve
the inequality

() () |
log A1 + u1q log 0 + -+ urlog —— + up4127i| < ¢ exp(—caU),
61]) 8'(;)

mit U = max{|uy|,...,|ur|}? If r =2 and u,41 = O, then one can
use the extremal property of continued fraction expansion. In
the general case the lattice basis reduction of Lenstra, Lenstra
und Lovasz can applied.
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In the Diophantine approximation problem one have to compute
the data with very high accuracy. The first program to solve
Thue equations was written by Ralf Schulenberg at the University
of Cologne in 1985. It assumed |m| = 1 and K totally real and
used Peter Weiler's program to compute a basis of the unit
group.

T he algorithmic theory of Thue equation was further developed
by de Weger and Tzanakis, as well as by Bilut and Hanrot. Today
there exist at least two independent implementations in KANT
and in PARI. In the solution of Lehmer’s primitive divisor problem
in 2001 solved Bilu, Hanrot and Voutier Thue equations up to
degree 260. These were lucky cases, because a maximal system
of independent units was known.



4. Regulator estimates.

In some applications, e.g. to compute fundamental units from
an independent system or to solve Thue equations, if we know
only an independent system of units it is required a lower bound
for the regulator. In 1931 Remak proved R > 0.001, provided R
is the regulator of a totally real number field.

In 1978 Michael improved this estimate to

no [ (1og 1T V5 e RPN
n<< QT> Wz) r(57)

where n denotes the degree of the field. This implies R > 0.315.




Later, with Zassenhaus, he proved a bound, which depends on

the discriminant to:
1/2

.
. 12log? /| Dk|/n" o7
- (n—1)n(n+1)—6ry | ~In

where ro, denotes the number of non-real conjugates of K and
v, IS Hermite's constant for positive definite quadratic forms.




In 1996 Halter-Koch, Lettl, Tichy and I proved the following
theorem.

Theorem 2. Letn >3, a1 =0,a»,...,a,_1 be distinct integers
and an, = a an integral parameter. Let o« = a(a) be a zero of
P(x) = [['-1(x — a;) £1 and suppose that the index I of (a —
ai,...,a—an_1) in Up is bounded by a constant J for every a from
some subset 2 C Z. Assume further that the Lang-Waldschmidt
conjecture is true. Then for all but finitely many values a € <2
the diophantine equation

n
[ (& —ay) £ y" = £1 (5)
i=1
only has trivial solutions +(x,y) = (1,0),(a;,1), i=1,...,n, ex-
cept when n = 3 and |as| = 1, or when n = 4 and (ap,a3) €

{(1,-1), (£1,4£2)}, in which cases (5) has exactly one more
parametrized solution.



In the proof of this theorem was playing Michael's regulator es-
timate an important role. Remark that if the field K = Q(«) is
primitive, for example n is prime then is J always bounded and
we need only the Lang-Waldschmidt conjecture.



5. Indexformgleichungen

Michael visited Hungary after 1979 regularly. During one of his
visits in Satoraljaujhely was taking this photo.






I was in 1984/85 an Alexander von Humboldt fellow of Peter
Bundschuh and of Michael. From 1987 started to work Istvan
Gaal with us. He studied first with Nicole Schulte index form
equations in cubic number fields, which are essentially cubic Thue
equations.

Let K be a number field of degree n, Zyk its ring of integers and
w1 = 1l,wo,...,wn an integral basis of Zk. Put

L(X) =20+ wox1 4+ -+ wnzpy_1.
The polynomial
k0= [I @W&x)-LOx))/Dg?,
1<i<j<n
IS homogenous, has rational integer coefficients and degree
n(n —1)/2. It is called an index form of K.



If m € Z, then
I(X)=m (6)

is called an index form equation, provided its solutions zo, ..., x,_1
belong to Q. We published between 1991 and 1996 eight papers
on index form equation in quartic fields.

To formulate our most general result we need some notations.
Let 2% 4 a123 4+ asx? + a3z + aq € Z[z] the minimal polynomial
of &, and put K = Q(&). Represent a € Zyk in the form

. _ %0t w1€ + 208% + 2387
d

with zg,...,x3,d € Z.

We proved the following theorem:



Theorem 3. Let i, = d°m/n where n is the index of £&. The
element « satisfies I(a) = m if and only if there are u,v € Z with

F(u,v) = u3—a2u2v—|—(a1a3—4a4)’w02—|—(4a2a4—a%—a%a4)v3 = +im

such that x1, x5, x3 satisfies
2 2 2 _ 5
z1 —a17172 + agxs + (af — 2a2)z123+

2 2
(a3 — ajap)zoz3 — (a1a3 — a5 — aq)z3
CU% — x1T3 — a1Tr2x3 + a2x§

|
S

[
=

We proved moreover, that the resolution of the system of the
above quadratic equations can be transformed to a single quar-
tic Thue equation, which splits over K. This theorem made
it possible for us to solve Index form equations in totally real
quartic fields with Galois group S4, which is certainly the most
complicated case.



Herzliche Gluckwunsch zum

60-sten Geburtstag!



