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1. Prolog

I know Michael since nearly 30 years. He visited the Lajos Kos-

suth University Debrecen at the first time in 1979. My university

had a computer and mathematics students had to learn to write

programs, but the idea to apply computers to solve number the-

oretical problems was for me new and fascinating.

As a Student of Kálmán Győry I just learned A. Bakers’s method.

It serves effective upper bound for many diophantine problems,

but the bounds were astronomic even for very simple questions.



Consider for example the cubes in the Fibonacci sequence, i.e.

the equation

Fn = x3.

I was able to prove n ≤ 1050 with Baker’s theory and asked

Michael whether it is possible to test the remaining finitely many

cases. You see his answer in the next slides.







I realized nearly in the same time a sieve method, which enabled

me to compute all cubes and later the fifth powers. Im 2003

proved Bugeaud, Mignotte and Siksek, that 0,1,8 and 144 are

the only perfect powers in the Fibonacci sequence.



2. Thue Equations

The connection between units and Diophantine equations better
to understand consider the Thue equations.

Let F (x, y) ∈ Z[x, y] of degree n ≥ 3, irreducible over Q[x, y].
Assume that the coefficient of xn is one. Let 0 6= m ∈ Z, then

F (x, y) = m (1)

is a Thue equation.

In C[x, y] we can factorize F (x, y) =
∏n

i=1(x− α(i)y).

Let α = α(1) and K = Q(α) then we can rewrite (1) in the form

n∏
i=1

(x− α(i)y) = NK/Q(x− αy) = m. (2)



The element x−αy has Norm m and belongs to M = Z[α] ⊆ ZK.

• Denote OM the coefficient ring of M , i.e.

OM = {λ : λM ⊆ M}.

• Denote EM the group of units of infinite order of OM

and ε1, . . . , εr a system of fundamental units of EM .

• Let A a maximal set of non-associated elements of M with

Norm m. The set A is finite. Then

Theorem 1. Let x, y ∈ Z a solution of (1). Then there exist a

µ ∈ A and u1, . . . , ur ∈ Z such that

β = x− αy = µε,

where ε = ε
u1
1 · · · εur

r .



Considering conjugates we get the system of equations

β(i) = x− α(i)y = µ(i)ε(i), i = 1, . . . , r.

Choosing 1 ≤ j < k < h ≤ n we obtain the Siegel’s relations:

(α(j)−α(k))µ(h)ε(h)+(α(h)−α(j))µ(k)ε(k)+(α(k)−α(h))µ(j)ε(j) = 0.

Division by (α(h) − α(k))µ(j)ε(j) 6= 0 implies the unit equation

A1E1 + A2E2 = 1, (3)
where

A1 =
(α(j) − α(k))µ(h)

(α(h) − α(k))µ(j)
, E1 =

(
ε(h)
1

ε(j)
1

)u1

· · ·

(
ε(h)

r

ε(j)
r

)ur

and

A2 =
(α(h) − α(j))µ(k)

(α(h) − α(k))µ(j)
, E2 =

(
ε(k)
1

ε(j)
1

)u1

· · ·

(
ε(k)

r

ε(j)
r

)ur

.



Choosing k such that |x−α(k)y| = min1≤i≤n |x−α(i)y|, we obtain

after some computation∣∣∣∣∣∣logA1 + u1 log
ε
(h)
1

ε
(j)
1

+ · · ·+ ur log
ε
(h)
r

ε
(j)
r

+ ur+12πi

∣∣∣∣∣∣ < c1 exp(−c2U),

(4)

with U = max{|u1|, . . . , |ur|}.
Here is ur+1 = 0, if A1 and E1 are real.

A. Baker combined this inequality with his theorem of linear

forms and proved

U ≤ C(n, m, DK),

which implies max{|x|, |y|} ≤ C′ nearly immediately.



For given F (x, y) and m we need the following data to solve

completely equation (1):

a. A fundamental system of units of EM or of EK.

b. The elements of A, i.e. a maximal system of non-associated

elements with norm m.

c. The solutions of the inequality (4).



3. Units

At the International Conference on Number Theory in 1981 in

Budapest delivered Michael a talk with title: On constructive

methods in algebraic number theory. We cite from his paper of

the Proceedings of this meeting:

Over the past ten years the application of computers to problems

of algebraic number theory has rapidly increased. Especially the

explicit computation of invariants of arbitrary algebraic number

fields F requires the use of electronic calculators in most cases.



Hence, the four fundamental tasks of constructive number the-

ory are to develop efficient algorithms

• for determining the Galois group of F,

• a Z-basis for the integers of F,

• a system of fundamental units of F,

• and a set of representatives of the ideal classes of F.

In this paper we desribe a new combined procedure for the com-

putation of the unit group and the class group.”

Details were published in 1982 in Math. Comp. in two papers.

To compute unit group and class group simultanously were used

afterward in most of the later methods. They differ basically in

the generation of sufficiently many algebraic integers or ideals

with bounded norm.



He wrote later: A computer program of our method for funda-

mental units written in FORTRAN is already operating at the

University of Cologne, a suitable supplement for the computation

of the class group and related problems is planned. We note that

the application of that program to ”arbitrary” number fields is

limited by the fact that all calculations are carried out in single

precision (14 decimal digits). Also the field degree should be less

than 10 because of computation time.



Hence, at the beginning of the 80’s there were available a pro-

gram to compute a basis of the unit group. But how to solve

the inequality∣∣∣∣∣∣logA1 + u1 log
ε
(h)
1

ε
(j)
1

+ · · ·+ ur log
ε
(h)
r

ε
(j)
r

+ ur+12πi

∣∣∣∣∣∣ < c1 exp(−c2U),

mit U = max{|u1|, . . . , |ur|}? If r = 2 and ur+1 = 0, then one can

use the extremal property of continued fraction expansion. In

the general case the lattice basis reduction of Lenstra, Lenstra

und Lovász can applied.





In the Diophantine approximation problem one have to compute

the data with very high accuracy. The first program to solve

Thue equations was written by Ralf Schulenberg at the University

of Cologne in 1985. It assumed |m| = 1 and K totally real and

used Peter Weiler’s program to compute a basis of the unit

group.

The algorithmic theory of Thue equation was further developed

by de Weger and Tzanakis, as well as by Bilut and Hanrot. Today

there exist at least two independent implementations in KANT

and in PARI. In the solution of Lehmer’s primitive divisor problem

in 2001 solved Bilu, Hanrot and Voutier Thue equations up to

degree 260. These were lucky cases, because a maximal system

of independent units was known.



4. Regulator estimates.

In some applications, e.g. to compute fundamental units from

an independent system or to solve Thue equations, if we know

only an independent system of units it is required a lower bound

for the regulator. In 1931 Remak proved R ≥ 0.001, provided R

is the regulator of a totally real number field.

In 1978 Michael improved this estimate to

R >

1

n

(log
1 +

√
5

2

)2

πn/2

n−1


1/2 (
Γ
(

n + 3

2

))−1
,

where n denotes the degree of the field. This implies R > 0.315.



Later, with Zassenhaus, he proved a bound, which depends on

the discriminant to:

R ≥


 12 log2

√
|DK|/nn

(n− 1)n(n + 1)− 6r2


r

2r2
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rn


1/2

,

where r2 denotes the number of non-real conjugates of K and

γr
r is Hermite’s constant for positive definite quadratic forms.



In 1996 Halter-Koch, Lettl, Tichy and I proved the following
theorem.
Theorem 2. Let n ≥ 3, a1 = 0, a2, . . . , an−1 be distinct integers
and an = a an integral parameter. Let α = α(a) be a zero of
P (x) =

∏n
i=1(x − ai) ± 1 and suppose that the index I of 〈α −

a1, . . . , α−an−1〉 in UO is bounded by a constant J for every a from
some subset Ω ⊆ Z. Assume further that the Lang-Waldschmidt
conjecture is true. Then for all but finitely many values a ∈ Ω
the diophantine equation

n∏
i=1

(x− aiy)± yn = ±1 (5)

only has trivial solutions ±(x, y) = (1,0), (ai,1), i = 1, . . . , n, ex-
cept when n = 3 and |a2| = 1, or when n = 4 and (a2, a3) ∈
{(1,−1), (±1,±2)}, in which cases (5) has exactly one more
parametrized solution.



In the proof of this theorem was playing Michael’s regulator es-

timate an important role. Remark that if the field K = Q(α) is

primitive, for example n is prime then is J always bounded and

we need only the Lang-Waldschmidt conjecture.



5. Indexformgleichungen

Michael visited Hungary after 1979 regularly. During one of his

visits in Sátoraljaújhely was taking this photo.





I was in 1984/85 an Alexander von Humboldt fellow of Peter

Bundschuh and of Michael. From 1987 started to work István

Gaál with us. He studied first with Nicole Schulte index form

equations in cubic number fields, which are essentially cubic Thue

equations.

Let K be a number field of degree n, ZK its ring of integers and

ω1 = 1, ω2, . . . , ωn an integral basis of ZK. Put

L(X) = x0 + ω2x1 + · · ·+ ωnxn−1.

The polynomial

IK/Q(X) =
∏

1≤i<j≤n

(L(i)(X)− L(j)(X))/D
1/2
K ,

is homogenous, has rational integer coefficients and degree

n(n− 1)/2. It is called an index form of K.



If m ∈ Z, then

I(X) = m (6)

is called an index form equation, provided its solutions x2, . . . , xn−1

belong to Q. We published between 1991 and 1996 eight papers

on index form equation in quartic fields.

To formulate our most general result we need some notations.

Let x4 + a1x3 + a2x2 + a3x + a4 ∈ Z[x] the minimal polynomial

of ξ, and put K = Q(ξ). Represent α ∈ ZK in the form

α =
x0 + x1ξ + x2ξ2 + x3ξ3

d

with x0, . . . , x3, d ∈ Z.

We proved the following theorem:



Theorem 3. Let im = d6m/n where n is the index of ξ. The
element α satisfies I(α) = m if and only if there are u, v ∈ Z with

F (u, v) = u3−a2u2v+(a1a3−4a4)uv2+(4a2a4−a2
3−a2

1a4)v
3 = ±im

such that x1, x2, x3 satisfies

x2
1 − a1x1x2 + a2x2

2 + (a2
1 − 2a2)x1x3+

(a3 − a1a2)x2x3 − (a1a3 − a2
2 − a4)x

2
3 = u

x2
2 − x1x3 − a1x2x3 + a2x2

3 = v.

We proved moreover, that the resolution of the system of the
above quadratic equations can be transformed to a single quar-
tic Thue equation, which splits over K. This theorem made
it possible for us to solve Index form equations in totally real
quartic fields with Galois group S4, which is certainly the most
complicated case.



Herzliche Glückwunsch zum

60-sten Geburtstag!


