
KASH
GAP3 Programming Language

KANT–Group
Technische Universität Berlin

Institut für Mathematik, MA 8-1
Straß e des 17. Juni 136
10623 Berlin, Germany

http://www.math.tu-berlin.de/~kant

October 18, 2005



2



Contents

1 Preface 7

1.1 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Programming Language 11

2.1 Lexical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Whitespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.13 Procedure Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14 If . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.15 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.16 Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.17 For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.18 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.19 Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.20 The Syntax in BNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Lists 29

3.1 IsList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



4 CONTENTS

3.2 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 List Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 List Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Identical Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 IsIdentical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.10 Enlarging Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Comparisons of Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.12 Operations for Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.15 PositionSorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.16 PositionProperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.17 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.18 Flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.19 Reversed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.20 Sublist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.21 Cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.22 Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.23 Collected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.24 Filtered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.25 ForAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.26 ForAny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.27 First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.28 Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.29 SortParallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.30 Sortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.31 Permuted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.32 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.33 Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.34 Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.35 Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.36 Iterated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



CONTENTS 5

3.37 RandomList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Sets 51

4.1 IsSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 SetIsEqual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 SetAdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 SetRemove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 SetUnite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 SetIntersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 SetSubtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Set Functions for Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 More about Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Records 57

5.1 Accessing Record Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Record Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Identical Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Comparisons of Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Operations for Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 In for Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Printing of Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8 IsRec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.9 IsBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 Unbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.11 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.12 ShallowCopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.13 RecFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



6 CONTENTS



Chapter 1

Preface

This description of the GAP3 programming language was taken from the GAP3 manual by
Martin Schönert together with Hans Ulrich Besche, Thomas Breuer, Frank Celler, Bettina
Eick, Volkmar Felsch, Alexander Hulpke, Jürgen Mnich, Werner Nickel, Alice Niemeyer, Götz
Pfeiffer, Udo Polis, and Heiko Theißen.

While KASH3 uses the GAP3 shell as its user interface not all examples given here will work
in KASH3. Nevertheless this is a more detailed description of the original features of the
GAP3 programming language than provided in the Introduction to KASH3. Please refer to
that document for the new features like methods, maps, and extended types.

KANT V4 is a program library for computations in algebraic number fields and (global)
algebraic function fields. In the number field case, algebraic integers are considered to be
elements of a specified order of an appropriate field F . Algebraic numbers are presented by
an integer and a denominator, usually chosen as a natural number. In the function field
case, also orders of F are used, but now over different coefficient rings. The representation of
algebraic functions is then done in an analogous way as for algebraic numbers. The available
algorithms provide the user with the means to compute many invariants of F . In the number
field case it is possible to solve tasks like calculating the solutions of Diophantine equations
related to F . Further subfields of F can be generated and F can be embedded into an
overfield. The potential of moving elements between different fields (orders) is a significant
feature of our system. In the function field case, for example, genus computations and the
construction of Riemann-Roch spaces are available.

KANT V4 was developed at the University of Düsseldorf from 1987 until 1993 and at the
Technical University Berlin afterwards. During these years the performance of existing algo-
rithms and their implementations grew dramatically. While calculations in number fields of
degree 4 and up were nearly impossible before 1970 and number fields of degree more than
10 were beyond reach until 1990, it is now possible to compute in number fields of degree
well over 20, and – in special cases – even beyond 1000. This also characterizes one of the
principles of KANT V4, namely to support computations in number fields of arbitrary degree
rather than fixing the degree and pushing the size of the discriminant to the limit.

KANT V4 consists of a C–library of more than 1000 functions for doing arithmetic in number
fields. Of course, the necessary auxiliaries from linear algebra over rings, especially lattices,
are also included. The set of these functions is based on the computer algebra system MAGMA

7



8 CHAPTER 1. PREFACE

from which we adopt our storage management, arithmetic for (long) integers and arbitrary
precision floating point numbers, arithmetic for finite fields, polynomial arithmetic and a
variety of other tools. Essentially, all of the public domain part of MAGMA is contained in
KANT V4. In return, almost all KANT V4 routines are included in MAGMA.

To make KANT V4 easier to use we developed a shell called KASH. This shell is based on
that of the group theory package GAP and the handling is similar to that of MAPLE. We
put great effort into enabling the user to handle the number theoretical objects in the very
same way as one would do using pencil and paper. For example, there is just one command
Factor for the factorization of elements from a factorial monoid like rational integers in Z,
polynomials over a field, or ideals from a Dedekind ring.

The main features of the current release of KASH are

• computation of maximal orders in numbers fields,

• computation of class groups,

• computation of fundamental units in arbitrary orders,

• decomposition of ideals in number fields,

• arithmetic of ideals,

• arithmetic of relative extensions of number fields,

• computation of maximal orders of a relative extension

• computation of normal forms of modules in relative extensions,

• solution of norm equations in absolute and relative extensions,

• computation of subfields,

• computation of Galois groups up to degree 15,

• computation of automorphisms in normal number fields,

• computation of ray class fields,

• computation of the genus of an algebraic function field, handling of places, divisors and
Riemann-Roch spaces,

• computation of maximal orders and ideal arithmetic in function fields,

• computation of reduced bases and fundamental units in global function fields,

• arithmetic in relative lattices,

• solving Thue and unit equations, integral points on Mordell curves,

• solving index form equations.

The development of KANT V4 as well as KASH is continued in view of providing the user
with the most advanced tools for computations in algebraic number fields. Suggestions for
important features to be included are welcome.
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1.1 Copyright

TU Berlin
Fachbereich 3 Mathematik
Strasse des 17. Juni 136
10623 Berlin, Germany

KASH can be copied and distributed freely for any non-commercial purpose.

If you copy KASH for somebody else, you may ask this person to refund your expenses. This
should cover cost of media, copying and shipping. You are not allowed to ask for more than
this. In any case you must give a copy of this copyright notice along with the program.

If you obtain KASH please send us a short notice to that effect, e.g., an e-mail message to
the address kant@math.tu-berlin.de containing your full name and address. This allows us to
keep track of the number of KASH users.

If you publish a mathematical result that was partly obtained using KASH, please cite

M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner
and K. Wildanger, KANT V4, in J. Symbolic Comp. 24 (1997), 267-283.

Also we would appreciate it if you could inform us about such a paper.

You are permitted to modify and redistribute KASH, but you are not allowed to restrict
further redistribution. That is to say proprietary modifications will not be allowed. We want
all versions of KASH to remain free. If you modify any part of KASH and redistribute it, you
must supply a ‘README’ document. This should specify what modifications you made in
which files. We do not want to take credit or be blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see
bug-fixes, improvements and new functions. So again we would appreciate it if you would
inform us about all modifications you make.

KASH is distributed by us without any warranty, to the extent permitted by applicable state
law. We distribute KASH *as is* without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

The entire risk as to the quality and performance of the program is with you. Should KASH
prove defective, you assume the cost of all necessary servicing, repair or correction. In no
case unless required by applicable law will we, and/or any other party who may modify and
redistribute KASH as permitted above, be liable to you for damages, including lost profits,
lost monies or other special, incidental or consequential damages arising out of the use or
inability to use KASH.
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Chapter 2

The Programming Language

This chapter describes the GAP programming language. It should allow you in principle to
predict the result of each and every input. In order to know what we are talking about, we
first have to look more closely at the process of interpretation and the various representations
of data involved.

First we have the input to GAP, given as a string of characters. How those characters enter
GAP is operating system dependent, e.g., they might be entered at a terminal, pasted with a
mouse into a window, or read from a file. The mechanism does not matter. This representation
of expressions by characters is called the external representation of the expression. Every
expression has at least one external representation that can be entered to get exactly this
expression.

The input, i.e., the external representation, is transformed in a process called reading to
an internal representation. At this point the input is analyzed and inputs that are not legal
external representations, according to the rules given below, are rejected as errors. Those
rules are usually called the syntax of a programming language.

The internal representation created by reading is called either an expression or a state-
ment. Later we will distinguish between those two terms, however now we will use them
interchangeably. The exact form of the internal representation does not matter. It could be a
string of characters equal to the external representation, in which case the reading would only
need to check for errors. It could be a series of machine instructions for the processor on which
GAP is running, in which case the reading would more appropriately be called compilation.
It is in fact a tree–like structure.

After the input has been read it is again transformed in a process called evaluation or
execution. Later we will distinguish between those two terms too, but for the moment we
will use them interchangeably. The name hints at the nature of this process, it replaces
an expression with the value of the expression. This works recursively, i.e., to evaluate an
expression first the subexpressions are evaluated and then the value of the expression is
computed according to rules given below from those values. Those rules are usually called
the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. The set of values is of course
a much smaller set than the set of expressions; for every value there are several expressions
that will evaluate to this value. Again the form in which such a value is represented internally

11



12 CHAPTER 2. THE PROGRAMMING LANGUAGE

does not matter. It is in fact a tree–like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates
an external representation, i.e., a string of characters again. What you do with this external
representation is up to you. You can look at it, paste it with the mouse into another window,
or write it to a file.

Lets look at an example to make this more clear. Suppose you type in the following string of
8 characters

1 + 2 * 3;

GAP takes this external representation and creates a tree like internal representation, which
we can picture as follows

+
/ \
1 *

/ \
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple
that they are their own value, we say that they are self–evaluating. After this has been done,
the rule for * tells us that the value is the product of the values of the two subexpressions,
which in this case is clearly 6. Combining this with the value of the left operand of the +,
which is self–evaluating too gives us the value of the whole expression 7. This is then printed,
i.e., converted into the external representation consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its
value is computed in terms of the values of the subexpressions. The syntactic rules are given
in sections 2.1, 2.2, 2.3, 2.4, 2.5, and 2.20, the semantic rules are given in sections 2.6, 2.7,
2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, and the chapters describing the
individual data types.

2.1 Lexical Structure

The input of GAP consists of sequences of the following characters.

Digits, uppercase and lowercase letters, space, tab, newline, and the special characters

" ’ ( ) * + , _
. / : ; < = > ~
[ \ ] ^ _ { } #

Other characters will be signalled as illegal. Inside strings and comments the full character
set supported by the computer is allowed.
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2.2 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called
scanning, that assembles the characters into symbols. A symbol is a sequence of characters
that form a lexical unit. The set of symbols consists of keywords, identifiers, strings, integers,
and operator and delimiter symbols.

A keyword is a reserved word consisting entirely of lowercase letters (see 2.4). An identifier
is a sequence of letters and digits that contains at least one letter and is not a keyword (see
2.5). An integer is a sequence of digits. A string is a sequence of arbitrary characters enclosed
in double quotes.

Operator and delimiter symbols are

+ - * / ^ ~
= <> < <= > >=
:= . .. -> , ;
[ ] { } ( )

Note that during the process of scanning also all whitespace is removed (see 2.3).

2.3 Whitespaces

The characters space, tab, newline, and return are called whitespace characters. Whites-
pace is used as necessary to separate lexical symbols, such as integers, identifiers, or keywords.
For example Thorondor is a single identifier, while Th or ondor is the keyword or between
the two identifiers Th and ondor. Whitespace may occur between any two symbols, but not
within a symbol. Two or more adjacent whitespaces are equivalent to a single whitespace.
Apart from the role as separator of symbols, whitespaces are otherwise insignificant. Whites-
paces may also occur inside a string, where they are significant. Whitespaces should also be
used freely for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and
continues to the end of the line on which the comment character appears. The whole comment,
including # and the newline character is treated as a single whitespace. Inside a string, the
comment character # looses its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if i < 0 then # if i is negative
a := -i; # take its inverse

else # otherwise
a := i; # take itself

fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<0thena:=-i;elsea:=i;fi;
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since the keyword if must be separated from the identifier i by a whitespace, and similarly
then and a, and else and a must be separated.

2.4 Keywords

Keywords are reserved words that are used to denote special operations or are part of
statements. They must not be used as identifiers. The keywords are

and do elif else end fi
for function if in local mod
not od or repeat return then
until while quit

Note that all keywords are written in lowercase. For example only else is a keyword; Else,
eLsE, ELSE and so forth are ordinary identifiers. Keywords must not contain whitespace, for
example el if is not the same as elif.

2.5 Identifiers

An identifier is used to refer to a variable (see 2.7). An identifier consists of letters, digits, and
underscores , and must contain at least one letter or underscore. An identifier is terminated
by the first character not in this class. Examples of valid identifiers are

a foo aLongIdentifier
hello Hello HELLO
x100 100x _100
some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed
by a character is equivalent to the character, except that this escape sequence is considered
to be an ordinary letter. For example G\(2\,5\) is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example \* and \mod are
identifier.

The length of identifiers is not limited, however only the first 1023 characters are significant.
The escape sequence \newline is ignored, making it possible to split long identifiers over
multiple lines.

2.6 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed
to produce a side effect and return no value are called statements (see 2.11). Expressions
appear as right hand sides of assignments (see 2.12), as actual arguments in function calls
(see 2.8), and in statements.
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Note that an expression is not the same as a value. For example 1 + 11 is an expression,
whose value is the integer 12. The external representation of this integer is the character
sequence 12, i.e., this sequence is output if the integer is printed. This sequence is another
expression whose value is the integer 12. The process of finding the value of an expression is
done by the interpreter and is called the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals
(see 2.7, 2.8,2.18,), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with
the operators to form more complex expressions. Of course those expressions can then be
combined further with the operators to form even more complex expressions. The operators
fall into three classes. The comparisons are =, <>, <=, >, >=, and in (see 2.9 and 3.13). The
arithmetic operators are +, -, *, /, mod, and ^ (see 2.10). The logical operators are not,
and, and or.

gap> 2 * 2; # a very simple expression with value
4
gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true # a more complex expression

2.7 Variables

A variable is a location in a GAP program that points to a value. We say the variable is
bound to this value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a
value by assigning this value to the variable (see 2.12). Because of this we sometimes say
that a variable that is not bound to any value has no assigned value. Assignment is in fact
the only way by which a variable, which is not an argument of a function, can be bound to
a value. After a variable has been bound to a value an assignment can also be used to bind
the variable to another value.

A special class of variables are arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call
(see 2.8).

Each variable has a name that is also called its identifier. This is because in a given scope
an identifier identifies a unique variable (see 2.5). A scope is a lexical part of a program text.
There is the global scope that encloses the entire program text, and there are local scopes
that range from the function keyword, denoting the beginning of a function definition, to
the corresponding end keyword. A local scope introduces new variables, whose identifiers
are given in the formal argument list and the local declaration of the function (see 2.18).
Usage of an identifier in a program text refers to the variable in the innermost scope that
has this identifier as its name. Because this mapping from identifiers to variables is done
when the program is read, not when it is executed, GAP is said to have lexical scoping. The
following example shows how one identifier refers to different variables at different points in
the program text.

g := 0; # global variable g
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x := function ( a, b, c )
local y;
g := c; # c refers to argument c of function x
y := function ( y )

local d, e, f;
d := y; # y refers to argument y of function y
e := b; # b refers to argument b of function x
f := g; # g refers to global variable g
return d + e + f;

end;
return y( a ); # y refers to local y of function x

end;

It is important to note that the concept of a variable in GAP is quite different from the
concept of a variable in programming languages like PASCAL. In those languages a variable
denotes a block of memory. The value of the variable is stored in this block. So in those
languages two variables can have the same value, but they can never have identical values,
because they denote different blocks of memory. (Note that PASCAL has the concept of
a reference argument. It seems as if such an argument and the variable used in the actual
function call have the same value, since changing the argument’s value also changes the value
of the variable used in the actual function call. But this is not so; the reference argument is
actually a pointer to the variable used in the actual function call, and it is the compiler that
inserts enough magic to make the pointer invisible.) In order for this to work the compiler
needs enough information to compute the amount of memory needed for each variable in a
program, which is readily available in the declarations PASCAL requires for every variable.

In GAP on the other hand each variable justs points to a value.

2.8 Function Calls

function-var()
function-var( arg-expr {, arg-expr} )

The function call has the effect of calling the function function-var . The precise semantics
are as follows.

First GAP evaluates the function-var . Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, namely it can for example be a selection of a list element list-
var[int-expr], or a selection of a record component record-var.ident . In any case GAP tests
whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an
error. An exception is the case when there is exactly one formal argument with the name
arg, in which case any number of actual arguments is allowed.

Now GAP allocates for each formal argument and for each formal local a new variable. Re-
member that a variable is a location in a GAP program that points to a value. Thus for each
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formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to the
new variable corresponding to the first formal argument, the second value is assigned to the
new variable corresponding to the second formal argument, and so on. However, GAP does
not make any guarantee about the order in which the arguments are evaluated. They might
be evaluated left to right, right to left, or in any other order, but each argument is evaluated
once. An exception again occurs if the function has only one formal argument with the name
arg. In this case the values of all the actual arguments are stored in a list and this list is
assigned to the new variable corresponding to the formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an
error.

Now the body of the function, which is a statement, is executed. If the identifier of one of
the formal arguments or formal locals appears in the body of the function it refers to the
new variable that was allocated for this formal argument or formal local, and evaluates to the
value of this variable.

If during the execution of the body of the function a return statement with an expression
(see 2.19) is executed, execution of the body is terminated and the value of the function call
is the value of the expression of the return. If during the execution of the body a return
statement without an expression is executed, execution of the body is terminated and the
function call does not produce a value, in which case we call this call a procedure call (see
2.13). If the execution of the body completes without execution of a return statement, the
function call again produces no value, and again we talk about a procedure call.

gap> Fibonacci( 11 );
# a call to the function Fibonacci with actual argument 11

89

gap> G.operations.RightCosets( G, Intersection( U, V ) );;
# a call to the function in G.operations.RightCosets
# where the second actual argument is another function call

2.9 Comparisons

left-expr = right-expr
left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal
and to false otherwise. Likewise <> tests for inequality of its two operands. Note that any
two objects can be compared, i.e., = and <> will never signal an error. For each type of
objects the definition of equality is given in the respective chapter. Objects of different types
are never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr
left-expr > right-expr
left-expr <= right-expr
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left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its
two operands. For each type of objects the definition of the ordering is given in the respective
chapter. The ordering of objects of different types is as follows. Rationals are smallest,
next are cyclotomics, followed by finite field elements, permutations, words, words in solvable
groups, boolean values, functions, lists, and records are largest.

Comparison operators, which includes the operator in (see 3.13) are not associative, i.e., it
is not allowed to write a = b <> c = d , you must use (a = b) <> (c = d) instead. The
comparison operators have higher precedence than the logical operators, but lower precedence
than the arithmetic operators (see 2.10). Thus, for example, a * b = c and d is interpreted,
((a * b) = c) and d).

gap> 2 * 2 + 9 = Fibonacci(7); # a comparison where the left
true # operand is an expression

2.10 Operations

+ right-expr
- right-expr
left-expr + right-expr
left-expr - right-expr
left-expr * right-expr
left-expr / right-expr
left-expr mod right-expr
left-expr ^ right-expr

The arithmetic operators are +, -, *, /, mod, and ^. The meanings (semantic) of those
operators generally depend on the types of the operands involved, and they are defined in the
various chapters describing the types. However basically the meanings are as follows.

+ denotes the addition, and - the subtraction of ring and field elements. * is the multiplication
of group elements, / is the multiplication of the left operand with the inverse of the right
operand. mod is only defined for integers and rationals and denotes the modulo operation. +
and - can also be used as unary operations. The unary + is ignored and unary - is equivalent
to multiplication by -1. ^ denotes powering of a group element if the right operand is an
integer, and is also used to denote operation if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ^ has the highest
precedence, followed by the unary operators + and -, which are followed by the multiplicative
operators *, /, and mod, and the additive binary operators + and - have the lowest precedence.
That means that the expression -2 ^ -2 * 3 + 1 is interpreted as (-(2 ^ (-2)) * 3) +
1. If in doubt use parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows.^ is not associative, i.e., it is illegal
to write 2^3^4, use parentheses to clarify whether you mean (2^3) ^ 4 or 2 ^ (3^4). The
unary operators + and - are right associative, because they are written to the left of their
operands. *, /, mod, +, and - are all left associative, i.e., 1-2-3 is interpreted as (1-2)-3 not
as 1-(2-3). Again, if in doubt use parentheses to clarify your intentions.
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The arithmetic operators have higher precedence than the comparison operators (see 2.9 and
3.13) and the logical operators. Thus, for example, a * b = c and d is interpreted, ((a *
b) = c) and d .

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

2.11 Statements

Assignments (see 2.12), Procedure calls (see 2.13), if statements (see 2.14), while (see 2.15),
repeat (see 2.16) and for loops (see 2.17), and the return statement (see 2.19) are called
statements. They can be entered interactively or be part of a function definition. Every
statement must be terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect.
For example an assignment has the effect of assigning a value to a variable, a for loop has
the effect of executing a statement sequence for all elements in a list and so on. We will
talk about evaluation of expressions but about execution of statements to emphasize this
difference.

It is possible to use expressions as statements. However this does cause a warning.

gap> if i <> 0 then k = 16/i; fi;
Syntax error: warning, this statement has no effect
if i <> 0 then k = 16/i; fi;

^

As you can see from the example this is useful for those users who are used to languages
where = instead of := denotes assignment.

A sequence of one or more statements is a statement sequence, and may occur everywhere
instead of a single statement. There is nothing like PASCAL’s BEGIN-END, instead each
construct is terminated by a keyword. The most simple statement sequence is a single semi-
colon, which can be used as an empty statement sequence.

2.12 Assignments

var := expr;

The assignment has the effect of assigning the value of the expressions expr to the variable
var .

The variable var may be an ordinary variable (see 2.7), a list element selection list-var[int-
expr] (see 3.5) or a record component selection record-var.ident (see 5.2). Since a list element
or a record component may itself be a list or a record the left hand side of an assignment may
be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything
else.
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If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop. As usual you can
leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

gap> S6 := rec( size := 720 );; S6;
rec(
size := 720 )

gap> S6.generators := [ (1,2), (1,2,3,4,5) ];; S6;
rec(
size := 720,
generators := [ (1,2), (1,2,3,4,5) ] )

gap> S6.generators[2] := (1,2,3,4,5,6);; S6;
rec(
size := 720,
generators := [ (1,2), (1,2,3,4,5,6) ] )

2.13 Procedure Calls

procedure-var();
procedure-var( arg-expr {, arg-expr} );

The procedure call has the effect of calling the procedure procedure-var . A procedure call is
done exactly like a function call (see 2.8). The distinction between functions and procedures
is only for the sake of the discussion, GAP does not distinguish between them.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., Length, Concatenation and
Order.

A procedure is a function that does not return a value but produces some effect. Procedures
are called only for this effect. As a convention the name of a procedure is a verb, denoting
what the procedure does, e.g., Print, Append and Sort.

gap> Read( "myfile.g" ); # a call to the procedure Read
gap> l := [ 1, 2 ];;
gap> Append( l, [3,4,5] ); # a call to the procedure Append

2.14 If

if bool-expr1 then statements1
{ elif bool-expr2 then statements2 }
[ else statements3 ]
fi;

The if statement allows one to execute statements depending on the value of some boolean
expression. The execution is done as follows.

First the expression bool-expr1 following the if is evaluated. If it evaluates to true the
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statement sequence statements1 after the first then is executed, and the execution of the if
statement is complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to
true the corresponding statement sequence statements2 is executed and execution of the if
statement is complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of
the if statement is complete. If there is no else part the if statement is complete without
executing any statement sequence.

Since the if statement is terminated by the fi keyword there is no question where an else
part belongs, i.e., GAP has no dangling else.
In if expr1 then if expr2 then stats1 else stats2 fi; fi;
the else part belongs to the second if statement, whereas in
if expr1 then if expr2 then stats1 fi; else stats2 fi;
the else part belongs to the first if statement.

Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a
value that could be assigned to abs.

If one expression evaluates neither to true nor to false an error is signalled and a break
loop is entered. As usual you can leave the break loop with quit;. If you enter return
true;, execution of the if statement continues as if the expression whose evaluation failed
had evaluated to true. Likewise, if you enter return false;, execution of the if statement
continues as if the expression whose evaluation failed had evaluated to false.

gap> i := 10;;
gap> if 0 < i then
> s := 1;
> elif i < 0 then
> s := -1;
> else
> s := 0;
> fi;
gap> s;
1 # the sign of i

2.15 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
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and the statement immediately following the while loop is executed next. Otherwise if it
evaluates to true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 2.16) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop is
entered. As usual you can leave the break loop with quit;. If you enter return false;,
execution continues with the next statement immediately following the while loop. If you
enter return true;, execution continues at statements, after which the next evaluation of
bool-expr may cause another error.

gap> i := 0;; s := 0;;
gap> while s <= 200 do
> i := i + 1; s := s + i^2;
> od;
gap> s;
204 # first sum of the first i squares larger than 200

2.16 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat
loop terminates and the statement immediately following the repeat loop is executed next.
Otherwise if it evaluates to false the whole process begins again with the execution of the
statements.

The difference between the while loop (see 2.15) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false a error is signalled and a break loop is
entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you
enter return false;, execution continues at statements, after which the next evaluation of
bool-expr may cause another error.

gap> i := 0;; s := 0;;
gap> repeat
> i := i + 1; s := s + i^2;
> until s > 200;
gap> s;
204 # first sum of the first i squares larger than 200
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2.17 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list list-
expr .

The statement sequence statements is first executed with simple-var bound to the first element
of the list list , then with simple-var bound to the second element of list and so on. simple-var
must be a simple variable, it must not be a list element selection list-var[int-expr] or a record
component selection record-var.ident .

The execution of the for loop is exactly equivalent to the while loop

loop-list := list;
loop-index := 1;
while loop-index <= Length(loop-list) do

variable := loop-list[loop-index];
statements
loop-index := loop-index + 1;

od;

with the exception that loop-list and loop-index are different variables for each for loop that
do not interfere with each other.

The list list is very often a range.
for variable in [from..to] do statements od;
corresponds to the more common
for variable from from to to do statements od;
in other programming languages.

gap> s := 0;;
gap> for i in [1..100] do
> s := s + i;
> od;
gap> s;
5050

Note in the following example how the modification of the list in the loop body causes the
loop body also to be executed for the new values

gap> l := [ 1, 2, 3, 4, 5, 6 ];;
gap> for i in l do
> Print( i, " " );
> if i mod 2 = 0 then Add( l, 3 * i / 2 ); fi;
> od; Print( "\n" );
1 2 3 4 5 6 3 6 9 9
gap> l;
[ 1, 2, 3, 4, 5, 6, 3, 6, 9, 9 ]

Note in the following example that the modification of the variable that holds the list has
no influence on the loop

gap> l := [ 1, 2, 3, 4, 5, 6 ];;
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gap> for i in l do
> Print( i, " " );
> l := [];
> od; Print( "\n" );
1 2 3 4 5 6
gap> l;
[ ]

2.18 Functions

function ( [ arg-ident {, arg-ident} ] )
[ local loc-ident {, loc-ident} ; ]
statements

end

A function is in fact a literal and not a statement. Such a function literal can be assigned to
a variable or to a list element or a record component. Later this function can be called as
described in 2.8.

The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence

gap> fib := function ( n )
> local f1, f2, f3, i;
> f1 := 1; f2 := 1;
> for i in [3..n] do
> f3 := f1 + f2;
> f1 := f2;
> f2 := f3;
> od;
> return f2;
> end;;
gap> List( [1..10], fib );
[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

Because for each of the formal arguments arg-ident and for each of the formal locals loc-
ident a new variable is allocated when the function is called (see 2.8), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function
that computes values of the Fibonacci sequence

gap> fib := function ( n )
> if n < 3 then
> return 1;
> else
> return fib(n-1) + fib(n-2);
> fi;
> end;;
gap> List( [1..10], fib );
[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]
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Note that the recursive version needs 2 * fib(n)-1 steps to compute fib(n), while the
iterative version of fib needs only n-2 steps. Both are not optimal however, the library
function Fibonacci only needs on the order of Log(n) steps.

arg-ident -> expr

This is a shorthand for
function ( arg-ident ) return expr; end.
arg-ident must be a single identifier, i.e., it is not possible to write functions of several
arguments this way. Also arg is not treated specially, so it is also impossible to write functions
that take a variable number of arguments this way.

The following is an example of a typical use of such a function

gap> Sum( List( [1..100], x -> x^2 ) );
338350

When a function fun1 definition is evaluated inside another function fun2 , GAP binds all the
identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function fun1 .
When fun1 is called, its body is executed in this environment. The following implementation
of a simple stack uses this. Values can be pushed onto the stack and then later be popped off
again. The interesting thing here is that the functions push and pop in the record returned by
Stack access the local variable stack of Stack. When Stack is called a new variable for the
identifier stack is created. When the function definitions of push and pop are then evaluated
(as part of the return statement) each reference to stack is bound to this new variable. Note
also that the two stacks A and B do not interfere, because each call of Stack creates a new
variable for stack.

gap> Stack := function ()
> local stack;
> stack := [];
> return rec(
> push := function ( value )
> Add( stack, value );
> end,
> pop := function ()
> local value;
> value := stack[Length(stack)];
> Unbind( stack[Length(stack)] );
> return value;
> end
> );
> end;;
gap> A := Stack();;
gap> B := Stack();;
gap> A.push( 1 ); A.push( 2 ); A.push( 3 );
gap> B.push( 4 ); B.push( 5 ); B.push( 6 );
gap> A.pop(); A.pop(); A.pop();
3
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2
1
gap> B.pop(); B.pop(); B.pop();
6
5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

2.19 Return

return;

In this form return terminates the call of the innermost function that is currently executing,
and control returns to the calling function. An error is signalled if no function is currently
executing. No value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing,
and returns the value of the expression expr . Control returns to the calling function. An
error is signalled if no function is currently executing.

Both statements can also be used in break loops. return; has the effect that the computation
continues where it was interrupted by an error or the user hitting ctrC. return expr; can be
used to continue execution after an error. What happens with the value expr depends on the
particular error.

2.20 The Syntax in BNF

This section contains the definition of the GAP syntax in Backus-Naur form.

A BNF is a set of rules, whose left side is the name of a syntactical construct. Those names
are enclosed in angle brackets and written in italics. The right side of each rule contains
a possible form for that syntactic construct. Each right side may contain names of other
syntactic constructs, again enclosed in angle brackets and written in italics, or character
sequences that must occur literally; they are written in typewriter style.

Furthermore each righthand side can contain the following metasymbols written in boldface.
If the right hand side contains forms separated by a pipe symbol (|) this means that one of
the possible forms can occur. If a part of a form is enclosed in square brackets ([ ]) this means
that this part is optional, i.e. might be present or missing. If part of the form is enclosed
in curly braces ({ }) this means that the part may occur arbitrarily often, or possibly be
missing.
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Ident := a|...|z|A|...|Z| {a|...|z|A|...|Z|0|...|9| }
Var := Ident

| Var . Ident
| Var . ( Expr )
| Var [ Expr ]
| Var { Expr }
| Var ( [ Expr { , Expr } ] )

List := [ [ Expr ] {, [ Expr ] } ]
| [ Expr [, Expr ] .. Expr ]

Record := rec( [ Ident := Expr {, Ident := Expr } ] )
Permutation := ( Expr {, Expr } ) { ( Expr {, Expr } ) }
Function := function ( [ Ident {, Ident } ] )

[ local Ident {, Ident } ; ]
Statements
end

Char := ’ any character ’
String := " { any character } "
Int := 0|1|...|9 { 0|1|...|9 }
Atom := Int

| Var
| ( Expr )
| Permutation
| Char
| String
| Function
| List
| Record

Factor := {+|-} Atom [ ^ {+|-} Atom ]
Term := Factor { *|/|mod Factor }
Arith := Term { +|- Term }
Rel := { not } Arith { =|<>|<|>|<=|>=|in Arith }
And := Rel { and Rel }
Log := And { or And }
Expr := Log

| Var [ -> Log ]
Statement := Expr

| Var := Expr
| if Expr then Statements
{ elif Expr then Statements }
[ else Statements ] fi

| for Var in Expr do Statements od
| while Expr do Statements od
| repeat Statements until Expr
| return [ Expr ]
| quit

Statements := { Statement ; }
| ;
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Chapter 3

Lists

Lists are the most important way to collect objects and treat them together. A list is a
collection of elements. A list also implies a partial mapping from the integers to the elements.
I.e., there is a first element of a list, a second, a third, and so on.

List constants are written by writing down the elements in order between square brackets
[, ], and separating them with commas ,. An empty list, i.e., a list with no elements, is
written as [].

gap> [ 1, 2, 3 ];
[ 1, 2, 3 ] # a list with three elements
gap> [ [], [ 1 ], [ 1, 2 ] ];
[ [ ], [ 1 ], [ 1, 2 ] ] # a list may contain other lists

Usually a list has no holes, i.e., contain an element at every position. However, it is absolutely
legal to have lists with holes. They are created by leaving the entry between the commas
empty. Lists with holes are sometimes convenient when the list represents a mapping from
a finite, but not consecutive, subset of the positive integers. We say that a list that has no
holes is dense.

gap> l := [ , 4, 9,, 25,, 49,,,, 121 ];;
gap> l[3];
9
gap> l[4];
Error, List Element: <list>[4] must have a value

It is most common that a list contains only elements of one type. This is not a must though.
It is absolutely possible to have lists whose elements are of different types. We say that a list
whose elements are all of the same type is homogeneous.

gap> l := [ 1, E(2), Z(3), (1,2,3), [1,2,3], "What a mess" ];;
gap> l[1]; l[3]; l[5][2];
1
Z(3)
2

The first sections describe the functions that test if an object is a list and convert an object
to a list (see 3.1 and 3.2).

29
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The next section describes how one can access elements of a list (see 3.3 and 3.4).

The next sections describe how one can change lists (see 3.5, 3.6, 3.7, 3.8, 3.10).

The next sections describe the operations applicable to lists (see 3.11 and 3.12).

The next sections describe how one can find elements in a list (see 3.13, 3.14, 3.15, 3.16).

The next sections describe the functions that construct new lists, e.g., sublists (see 3.17, 3.18,
3.19, 3.20, 3.21).

The next sections describe the functions deal with the subset of elements of a list that have
a certain property (see 3.22, 3.23, 3.24, 3.25, 3.26, 3.27).

The next sections describe the functions that sort lists (see 3.28, 3.29, 3.30, 3.31).

The next sections describe the functions to compute the product, sum, maximum, and mini-
mum of the elements in a list (see 3.32, 3.33, 3.34, 3.35, 3.36).

The final section describes the function that takes a random element from a list (see 3.37).

Lists are also used to represent sets, subsets, vectors, and ranges.

3.1 IsList

IsList( obj )

IsList returns true if the argument obj , which can be an arbitrary object, is a list and false
otherwise. Will signal an error if obj is an unbound variable.

gap> IsList( [ 1, 3, 5, 7 ] );
true
gap> IsList( 1 );
false

3.2 List

List( obj )
List( list, func )

In its first form List returns the argument obj , which must be a list, a permutation, a string
or a word, converted into a list. If obj is a list, it is simply returned. If obj is a permutation,
List returns a list where the i -th element is the image of i under the permutation obj . If obj
is a word, List returns a list where the i -th element is the i -th generator of the word, as a
word of length 1.

gap> List( [1,2,3] );
[ 1, 2, 3 ]
gap> List( (1,2)(3,4,5) );
[ 2, 1, 4, 5, 3 ]

In its second form List returns a new list, where each element is the result of applying the
function func, which must take exactly one argument and handle the elements of list , to the
corresponding element of the list list . The list list must not contain holes.
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gap> List( [1,2,3], x->x^2 );
[ 1, 4, 9 ]
gap> List( [1..10], IsPrime );
[ false, true, true, false, true, false, true, false, false, false ]

Note that this function is called map in Lisp and many other similar programming languages.
This name violates the GAP rule that verbs are used for functions that change their arguments.
According to this rule map would change list , replacing every element with the result of the
application func to this argument.

3.3 List Elements

list[ pos ]

The above construct evaluates to the pos-th element of the list list . pos must be a positive
integer. List indexing is done with origin 1, i.e., the first element of the list is the element at
position 1.

gap> l := [ 2, 3, 5, 7, 11, 13 ];;
gap> l[1];
2
gap> l[2];
3
gap> l[6];
13

If list does not evaluate to a list, or pos does not evaluate to a positive integer, or list[pos]
is unbound an error is signalled. As usual you can leave the break loop with quit;. On the
other hand you can return a result to be used in place of the list element by return expr;.

list{ poss }
The above construct evaluates to a new list new whose first element is list[poss[1]], whose
second element is list[poss[2]], and so on. poss must be a dense list of positive integers, it
need, however, not be sorted and may contain duplicate elements. If for any i , list[ poss[i]
] is unbound, an error is signalled.

gap> l := [ 2, 3, 5, 7, 11, 13, 17, 19 ];;
gap> l{[4..6]};
[ 7, 11, 13 ]
gap> l{[1,7,1,8]};
[ 2, 17, 2, 19 ]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the left operand (see 3.8).

It is possible to nest such sublist extractions, as can be seen in the following example.

gap> m := [ [1,2,3], [4,5,6], [7,8,9], [10,11,12] ];;
gap> m{[1,2,3]}{[3,2]};
[ [ 3, 2 ], [ 6, 5 ], [ 9, 8 ] ]
gap> l := m{[1,2,3]};; l{[3,2]};
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[ [ 7, 8, 9 ], [ 4, 5, 6 ] ]

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from
m and then extracts the elements 3 and 2 from this list. The former extracts elements 1, 2,
and 3 from m and then extracts the elements 3 and 2 from each of those element lists.

To be precise. With each selector [pos] or {poss} we associate a level that is defined as the
number of selectors of the form {poss} to its left in the same expression. For example

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level 0 0 1 1 1 2

Then a selector list[pos] of level level is computed as ListElement(list,pos,level), where
ListElement is defined as follows

ListElement := function ( list, pos, level )
if level = 0 then

return list[pos];
else

return List( list, elm -> ListElement(elm,pos,level-1) );
fi;

end;

and a selector list{poss} of level level is computed as ListElements(list,poss,level), where
ListElements is defined as follows

ListElements := function ( list, poss, level )
if level = 0 then

return list{poss};
else

return List( list, elm -> ListElements(elm,poss,level-1) );
fi;

end;

3.4 Length

Length( list )

Length returns the length of the list list . The length is defined as 0 for the empty list, and
as the largest positive integer index such that list[index] has an assigned value for nonempty
lists. Note that the length of a list may change if new elements are added to it or assigned to
previously unassigned positions.

gap> Length( [] );
0
gap> Length( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );
8
gap> Length( [ 1, 2,,, 5 ] );
5

For lists that contain no holes Length, Number (see 3.22), and Size return the same value.
For lists with holes Length returns the largest index of a bound entry, Number returns the
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number of bound entries, and Size signals an error.

3.5 List Assignment

list[ pos ] := object;

The list assignment assigns the object object , which can be of any type, to the list entry at
the position pos, which must be a positive integer, in the list list . That means that accessing
the pos-th element of the list list will return object after this assignment.

gap> l := [ 1, 2, 3 ];;
gap> l[1] := 3;; l; # assign a new object
[ 3, 2, 3 ]
gap> l[2] := [ 4, 5, 6 ];; l; # object may be of any type
[ 3, [ 4, 5, 6 ], 3 ]
gap> l[ l[1] ] := 10;; l; # index may be an expression
[ 3, [ 4, 5, 6 ], 10 ]

If the index pos is larger than the length of the list list (see 3.4), the list is automatically
enlarged to make room for the new element. Note that it is possible to generate lists with
holes that way.

gap> l[4] := "another entry";; l; # list is enlarged
[ 3, [ 4, 5, 6 ], 10, "another entry" ]
gap> l[ 10 ] := 1;; l; # now list has a hole
[ 3, [ 4, 5, 6 ], 10, "another entry",,,,,, 1 ]

The function Add (see 3.6) should be used if you want to add an element to the end of the
list.

Note that assigning to a list changes the list. The ability to change an object is only available
for lists and records (see 3.8).

If list does not evaluate to a list, pos does not evaluate to a positive integer or object is a call
to a function which does not return a value, for example Print, an error is signalled As usual
you can leave the break loop with quit;. On the other hand you can continue the assignment
by returning a list, an index or an object using return expr;.

list{ poss } := objects;

The list assignment assigns the object objects[1], which can be of any type, to the list list at
the position poss[1], the object objects[2] to list[poss[2]], and so on. poss must be a dense
list of positive integers, it need, however, not be sorted and may contain duplicate elements.
objects must be a dense list and must have the same length as poss.

gap> l := [ 2, 3, 5, 7, 11, 13, 17, 19 ];;
gap> l{[1..4]} := [10..13];; l;
[ 10, 11, 12, 13, 11, 13, 17, 19 ]
gap> l{[1,7,1,10]} := [ 1, 2, 3, 4 ];; l;
[ 3, 11, 12, 13, 11, 13, 2, 19,, 4 ]

It is possible to nest such sublist assignments, as can be seen in the following example.
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gap> m := [ [1,2,3], [4,5,6], [7,8,9], [10,11,12] ];;
gap> m{[1,2,3]}{[3,2]} := [ [11,12], [13,14], [15,16] ];; m;
[ [ 1, 12, 11 ], [ 4, 14, 13 ], [ 7, 16, 15 ], [ 10, 11, 12 ] ]

The exact behaviour is defined in the same way as for list extractions (see 3.3). Namely with
each selector [pos] or {poss} we associate a level that is defined as the number of selectors
of the form {poss} to its left in the same expression. For example

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level 0 0 1 1 1 2

Then a list assignment list[pos] := vals; of level level is computed as ListAssignment(
list, pos, vals, level ), where ListAssignment is defined as follows

ListAssignment := function ( list, pos, vals, level )
local i;
if level = 0 then

list[pos] := vals;
else

for i in [1..Length(list)] do
ListAssignment( list[i], pos, vals[i], level-1 );

od;
fi;

end;

and a list assignment list{poss} := vals of level level is computed as ListAssignments(
list, poss, vals, level ), where ListAssignments is defined as follows

ListAssignments := function ( list, poss, vals, level )
local i;
if level = 0 then

list{poss} := vals;
else

for i in [1..Length(list)] do
ListAssignments( list[i], poss, vals[i], level-1 );

od;
fi;

end;

3.6 Add

Add( list, elm )

Add adds the element elm to the end of the list list , i.e., it is equivalent to the assignment
list[ Length(list) + 1 ] := elm. The list is automatically enlarged to make room for the
new element. Add returns nothing, it is called only for its side effect.

Note that adding to a list changes the list. The ability to change an object is only available
for lists and records (see 3.8).

To add more than one element to a list use Append (see 3.7).
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gap> l := [ 2, 3, 5 ];; Add( l, 7 ); l;
[ 2, 3, 5, 7 ]

3.7 Append

Append( list1, list2 )

Append adds (see 3.6) the elements of the list list2 to the end of the list list1 . list2 may
contain holes, in which case the corresponding entries in list1 will be left unbound. Append
returns nothing, it is called only for its side effect.

gap> l := [ 2, 3, 5 ];; Append( l, [ 7, 11, 13 ] ); l;
[ 2, 3, 5, 7, 11, 13 ]
gap> Append( l, [ 17,, 23 ] ); l;
[ 2, 3, 5, 7, 11, 13, 17,, 23 ]

Note that appending to a list changes the list. The ability to change an object is only available
for lists and records (see 3.8).

Note that Append changes the first argument, while Concatenation (see 3.17) creates a
new list and leaves its arguments unchanged. As usual the name of the function that work
destructively is a verb, but the name of the function that creates a new object is a substantive.

3.8 Identical Lists

With the list assignment (see 3.5, 3.6, 3.7) it is possible to change a list. The ability to
change an object is only available for lists and records. This section describes the semantic
consequences of this fact.

You may think that in the following example the second assignment changes the integer, and
that therefore the above sentence, which claimed that only lists and records can be changed
is wrong

i := 3;
i := i + 1;

But in this example not the integer 3 is changed by adding one to it. Instead the variable
i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the following example

l := [ 1, 2 ];
l := [ 1, 2, 3 ];

The second assignment does not change the first list, instead it assigns a new list to the
variable l. On the other hand, in the following example the list is changed by the second
assignment.

l := [ 1, 2 ];
l[3] := 3;

To understand the difference first think of a variable as a name for an object. The important
point is that a list can have several names at the same time. An assignment var := list;
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means in this interpretation that var is a name for the object list . At the end of the following
example l2 still has the value [ 1, 2 ] as this list has not been changed and nothing else
has been assigned to it.

l1 := [ 1, 2 ];
l2 := l1;
l1 := [ 1, 2, 3 ];

But after the following example the list for which l2 is a name has been changed and thus
the value of l2 is now [ 1, 2, 3 ].

l1 := [ 1, 2 ];
l2 := l1;
l1[3] := 3;

We shall say that two lists are identical if changing one of them by a list assignment also
changes the other one. This is slightly incorrect, because if two lists are identical, there are
actually only two names for one list. However, the correct usage would be very awkward and
would only add to the confusion. Note that two identical lists must be equal, because there
is only one list with two different names. Thus identity is an equivalence relation that is a
refinement of equality.

Let us now consider under which circumstances two lists are identical.

If you enter a list literal than the list denoted by this literal is a new list that is not identical
to any other list. Thus in the following example l1 and l2 are not identical, though they are
equal of course.

l1 := [ 1, 2 ];
l2 := [ 1, 2 ];

Also in the following example, no lists in the list l are identical.

l := [];
for i in [1..10] do l[i] := [ 1, 2 ]; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable on
the left hand side and the list on the right hand side of the assignment are identical. So in
the following example l1 and l2 are identical lists.

l1 := [ 1, 2 ];
l2 := l1;

If you pass a list as argument, the old list and the argument of the function are identical.
Also if you return a list from a function, the old list and the value of the function call are
identical. So in the following example l1 and l2 are identical list

l1 := [ 1, 2 ];
f := function ( l ) return l; end;
l2 := f( l1 );

The functions Copy and ShallowCopy (see 5.11 and 5.12) accept a list and return a new list
that is equal to the old list but that is not identical to the old list. The difference between
Copy and ShallowCopy is that in the case of ShallowCopy the corresponding elements of the
new and the old lists will be identical, whereas in the case of Copy they will only be equal.
So in the following example l1 and l2 are not identical lists.
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l1 := [ 1, 2 ];
l2 := Copy( l1 );

If you change a list it keeps its identity. Thus if two lists are identical and you change one of
them, you also change the other, and they are still identical afterwards. On the other hand,
two lists that are not identical will never become identical if you change one of them. So in
the following example both l1 and l2 are changed, and are still identical.

l1 := [ 1, 2 ];
l2 := l1;
l1[1] := 2;

3.9 IsIdentical

IsIdentical( l, r )

IsIdentical returns true if the objects l and r are identical. Unchangeable objects are
considered identical if the are equal. Changeable objects, i.e., lists and records, are identical
if changing one of them by an assignment also changes the other one, as described in 3.8.

gap> IsIdentical( 1, 1 );
true
gap> IsIdentical( 1, () );
false
gap> l := [ ’h’, ’a’, ’l’, ’l’, ’o’ ];;
gap> l = "hallo";
true
gap> IsIdentical( l, "hallo" );
false

3.10 Enlarging Lists

The previous section (see 3.5) told you (among other things), that it is possible to assign
beyond the logical end of a list, automatically enlarging the list. This section tells you how
this is done.

It would be extremly wasteful to make all lists large enough so that there is room for all
assignments, because some lists may have more than 100000 elements, while most lists have
less than 10 elements.

On the other hand suppose every assignment beyond the end of a list would be done by
allocating new space for the list and copying all entries to the new space. Then creating a
list of 1000 elements by assigning them in order, would take half a million copy operations
and also create a lot of garbage that the garbage collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct size.
If a list is enlarged, because of an assignment beyond the end of the list, it is enlarged by at
least length/8 + 4 entries. Therefore the next assignments beyond the end of the list do not
need to enlarge the list. For example creating a list of 1000 elements by assigning them in



38 CHAPTER 3. LISTS

order, would now take only 32 enlargements.

The result of this is of course that the physical length, which is also called the size, of a list
may be different from the logical length, which is usually called simply the length of the
list. Aside from the implications for the performance you need not be aware of the physical
length. In fact all you can ever observe, for example by calling Length is the logical length.

Suppose that Length would have to take the physical length and then test how many entries
at the end of a list are unassigned, to compute the logical length of the list. That would take
too much time. In order to make Length, and other functions that need to know the logical
length, more efficient, the length of a list is stored along with the list.

A note aside. In the previous version 2.4 of GAP a list was indeed enlarged every time an
assignment beyond the end of the list was performed. To deal with the above inefficiency
the following hacks where used. Instead of creating lists in order they were usually created
in reverse order. In situations where this was not possible a dummy assignment to the last
position was performed, for example

l := [];
l[1000] := "dummy";
l[1] := first_value();
for i from 2 to 1000 do l[i] := next_value(l[i-1]); od;

3.11 Comparisons of Lists

list1 = list2
list1 <> list2

The equality operator = evaluates to true if the two lists list1 and list2 are equal and false
otherwise. The inequality operator <> evaluates to true if the two lists are not equal and
false otherwise. Two lists list1 and list2 are equal if and only if for every index i , either
both entries list1[i] and list2[i] are unbound, or both are bound and are equal, i.e., list1[i]
= list2[i] is true.

gap> [ 1, 2, 3 ] = [ 1, 2, 3 ];
true
gap> [ , 2, 3 ] = [ 1, 2, ];
false
gap> [ 1, 2, 3 ] = [ 3, 2, 1 ];
false

list1 < list2 , list1 <= list2 list1 > list2 , list1 >= list2

The operators <, <=, > and >= evaluate to true if the list list1 is less than, less than or
equal to, greater than, or greater than or equal to the list list2 and to false otherwise. Lists
are ordered lexicographically, with unbound entries comparing very small. That means the
following. Let i be the smallest positive integer i , such that neither both entries list1[i] and
list2[i] are unbound, nor both are bound and equal. Then list1 is less than list2 if either
list1[i] is unbound (and list2[i] is not) or both are bound and list1[i] < list2[i] is true.

gap> [ 1, 2, 3, 4 ] < [ 1, 2, 4, 8 ];
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true # list1[3] < list2[3]
gap> [ 1, 2, 3 ] < [ 1, 2, 3, 4 ];
true # list1[4] is unbound and therefore very small
gap> [ 1, , 3, 4 ] < [ 1, 2, 3 ];
true # list1[2] is unbound and therefore very small

You can also compare objects of other types, for example integers or permutations with lists.
Of course those objects are never equal to a list. Records are greater than lists, objects of
every other type are smaller than lists.

gap> 123 < [ 1, 2, 3 ];
true
gap> [ 1, 2, 3 ] < rec( a := 123 );
true

3.12 Operations for Lists

list * obj
obj * list

The operator * evaluates to the product of list list by an object obj . The product is a new
list that at each position contains the product of the corresponding element of list by obj .
list may contain holes, in which case the result will contain holes at the same positions.

The elements of list and obj must be objects of the following types; integers, rationals,
cyclotomics, elements of a finite field, permutations, matrices, words in abstract generators,
or words in solvable groups.

gap> [ 1, 2, 3 ] * 2;
[ 2, 4, 6 ]
gap> 2 * [ 2, 3,, 5,, 7 ];
[ 4, 6,, 10,, 14 ]
gap> [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] * (1,4);
[ (1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4) ]

Many more operators are available for vectors and matrices, which are also represented by
lists.

3.13 In

elm in list

The in operator evaluates to true if the object elm is an element of the list list and to
false otherwise. elm is an element of list if there is a positive integer index such that
list[index]=elm is true. elm may be an object of an arbitrary type and list may be a list
containing elements of any type.

It is much faster to test for membership for sets, because for sets, which are always sorted,
in can use a binary search, instead of the linear search used for ordinary lists. So if you have
a list for which you want to perform a large number of membership tests you may consider
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converting it to a set with the function Set (see 4.2).

gap> 1 in [ 2, 2, 1, 3 ];
true
gap> 1 in [ 4, -1, 0, 3 ];
false
gap> s := Set([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> 17 in s;
false # uses binary search and only 4 comparisons
gap> 1 in [ "This", "is", "a", "list", "of", "strings" ];
false
gap> [1,2] in [ [0,6], [0,4], [1,3], [1,5], [1,2], [3,4] ];
true

Position (see 3.14) and PositionSorted (see 3.15) allow you to find the position of an
element in a list.

3.14 Position

Position( list, elm )

Position returns the position of the element elm, which may be an object of any type, in
the list list . If the element is not in the list the result is false. If the element appears several
times, the first position is returned.

It is much faster to search for an element in a set, because for sets, which are always sorted,
Position can use a binary search, instead of the linear search used for ordinary lists. So if
you have a list for which you want to perform a large number of searches you may consider
converting it to a set with the function Set (see 4.2).

gap> Position( [ 2, 2, 1, 3 ], 1 );
3
gap> Position( [ 2, 1, 1, 3 ], 1 );
2
gap> Position( [ 4, -1, 0, 3 ], 1 );
false
gap> s := Set([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> Position( s, 17 );
false # uses binary search and only 4 comparisons
gap> Position( [ "This", "is", "a", "list", "of", "strings" ], 1 );
false
gap> Position( [ [0,6], [0,4], [1,3], [1,5], [1,2], [3,4] ], [1,2] );
5

The in operator (see 3.13) can be used if you are only interested to know whether the
element is in the list or not. PositionSorted (see 3.15) can be used if the list is sorted.
PositionProperty (see 3.16) allows you to find the position of an element that satisfies a
certain property in a list.
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3.15 PositionSorted

PositionSorted( list, elm )
PositionSorted( list, elm, func )

In the first form PositionSorted returns the position of the element elm, which may be an
object of any type, with respect to the sorted list list .

In the second form PositionSorted returns the position of the element elm, which may be
an object of any type with respect to the list list , which must be sorted with respect to func.
func must be a function of two arguments that returns true if the first argument is less than
the second argument and false otherwise.

PositionSorted returns pos such that list[pos-1] <elm and elm <= list[pos]. That means,
if elm appears once in list , its position is returned. If elm appears several times in list , the
position of the first occurrence is returned. If elm is not an element of list , the index where
elm must be inserted to keep the list sorted is returned.

gap> PositionSorted( [1,4,5,5,6,7], 0 );
1
gap> PositionSorted( [1,4,5,5,6,7], 2 );
2
gap> PositionSorted( [1,4,5,5,6,7], 4 );
2
gap> PositionSorted( [1,4,5,5,6,7], 5 );
3
gap> PositionSorted( [1,4,5,5,6,7], 8 );
7

Position (see 3.14) is another function that returns the position of an element in a list.
Position accepts unsorted lists, uses linear instead of binary search and returns false if elm
is not in list .

3.16 PositionProperty

PositionProperty( list, func )

PositionProperty returns the position of the first element in the list list for which the unary
function func returns true. list must not contain holes. If func returns false for all elements
of list false is returned. func must return true or false for every element of list , otherwise
an error is signalled.

gap> PositionProperty( [10^7..10^8], IsPrime );
20
gap> PositionProperty( [10^5..10^6],
> n -> not IsPrime(n) and IsPrimePowerInt(n) );
490

First (see 3.27) allows you to extract the first element of a list that satisfies a certain property.
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3.17 Concatenation

Concatenation( list1, list2.. )
Concatenation( list )

In the first form Concatenation returns the concatenation of the lists list1 , list2 , etc. The
concatenation is the list that begins with the elements of list1 , followed by the elements
of list2 and so on. Each list may also contain holes, in which case the concatenation also
contains holes at the corresponding positions.

gap> Concatenation( [ 1, 2, 3 ], [ 4, 5 ] );
[ 1, 2, 3, 4, 5 ]
gap> Concatenation( [2,3,,5,,7], [11,,13,,,,17,,19] );
[ 2, 3,, 5,, 7, 11,, 13,,,, 17,, 19 ]

In the second form list must be a list of lists list1 , list2 , etc, and Concatenation returns the
concatenation of those lists.

gap> Concatenation( [ [1,2,3], [2,3,4], [3,4,5] ] );
[ 1, 2, 3, 2, 3, 4, 3, 4, 5 ]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument lists (see 3.8).

Note that Concatenation creates a new list and leaves it arguments unchanged, while Append
(see 3.7) changes its first argument. As usual the name of the function that works destructively
is a verb, but the name of the function that creates a new object is a substantive.

Set(Concatenation(set1,set2..)) (see 4.2) is a way to compute the union of sets, however,
Union is more efficient.

3.18 Flat

Flat( list )

Flat returns the list of all elements that are contained in the list list or its sublists. That is,
Flat first makes a new empty list new . Then it loops over the elements elm of list . If elm is
not a list it is added to new , otherwise Flat appends Flat( elm ) to new .

gap> Flat( [ 1, [ 2, 3 ], [ [ 1, 2 ], 3 ] ] );
[ 1, 2, 3, 1, 2, 3 ]
gap> Flat( [ ] );
[ ]

3.19 Reversed

Reversed( list )

Reversed returns a new list that contains the elements of the list list , which must not contain
holes, in reverse order. The argument list is unchanged.

gap> Reversed( [ 1, 4, 5, 5, 6, 7 ] );
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[ 7, 6, 5, 5, 4, 1 ]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument list (see 3.8).

3.20 Sublist

Sublist( list, inds )

Sublist returns a new list in which the i -th element is the element list[ inds[ i ] ], of the
list list . inds must be a list of positive integers without holes, it need, however, not be sorted
and may contains duplicate elements. If list[ inds[ i ] ] is unbound for an i , an error is
signalled.

gap> Sublist( [ 2, 3, 5, 7, 11, 13, 17, 19 ], [4..6] );
[ 7, 11, 13 ]
gap> Sublist( [ 2, 3, 5, 7, 11, 13, 17, 19 ], [1,7,1,8] );
[ 2, 17, 2, 19 ]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument list (see 3.8).

Filtered (see 3.24) allows you to extract elements from a list according to a predicate.

Sublist has been made obsolete by the introduction of the construct list{ inds } (see 3.3).

3.21 Cartesian

Cartesian( list1, list2.. )
Cartesian( list )

In the first form Cartesian returns the cartesian product of the lists list1 , list2 , etc.

In the second form list must be a list of lists list1 , list2 , etc., and Cartesian returns the
cartesian product of those lists.

The cartesian product is a list cart of lists tup, such that the first element of tup is an
element of list1 , the second element of tup is an element of list2 , and so on. The total number
of elements in cart is the product of the lengths of the argument lists. In particular cart is
empty if and only if at least one of the argument lists is empty. Also cart contains duplicates
if and only if no argument list is empty and at least one contains duplicates.

The last index runs fastest. That means that the first element tup1 of cart contains the first
element from list1 , from list2 and so on. The second element tup2 of cart contains the first
element from list1 , the first from list2 , an so on, but the last element of tup2 is the second
element of the last argument list. This implies that cart is a set if and only if all argument
lists are sets.

gap> Cartesian( [1,2], [3,4], [5,6] );
[ [ 1, 3, 5 ], [ 1, 3, 6 ], [ 1, 4, 5 ], [ 1, 4, 6 ], [ 2, 3, 5 ],
[ 2, 3, 6 ], [ 2, 4, 5 ], [ 2, 4, 6 ] ]

gap> Cartesian( [1,2,2], [1,1,2] );
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[ [ 1, 1 ], [ 1, 1 ], [ 1, 2 ], [ 2, 1 ], [ 2, 1 ], [ 2, 2 ],
[ 2, 1 ], [ 2, 1 ], [ 2, 2 ] ]

The function Tuples computes the k -fold cartesian product of a list.

3.22 Number

Number( list )
Number( list, func )

In the first form Number returns the number of bound entries in the list list .

For lists that contain no holes Number, Length (see 3.4), and Size return the same value.
For lists with holes Number returns the number of bound entries, Length returns the largest
index of a bound entry, and Size signals an error.

Number returns the number of elements of the list list for which the unary function func
returns true. If an element for which func returns true appears several times in list it will
also be counted several times. func must return either true or false for every element of
list , otherwise an error is signalled.

gap> Number( [ 2, 3, 5, 7 ] );
4
gap> Number( [, 2, 3,, 5,, 7,,,, 11 ] );
5
gap> Number( [1..20], IsPrime );
8
gap> Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );
4
gap> Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0 );
2

Filtered (see 3.24) allows you to extract the elements of a list that have a certain property.

3.23 Collected

Collected( list )

Collected returns a new list new that contains for each different element elm of list a list of
two elements, the first element is elm itself, and the second element is the number of times elm
appears in list . The order of those pairs in new corresponds to the ordering of the elements
elm, so that the result is sorted.

gap> Factors( Factorial( 10 ) );
[ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 7 ]
gap> Collected( last );
[ [ 2, 8 ], [ 3, 4 ], [ 5, 2 ], [ 7, 1 ] ]
gap> Collected( last );
[ [ [ 2, 8 ], 1 ], [ [ 3, 4 ], 1 ], [ [ 5, 2 ], 1 ], [ [ 7, 1 ], 1 ] ]
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3.24 Filtered

Filtered( list, func )

Filtered returns a new list that contains those elements of the list list for which the unary
function func returns true. The order of the elements in the result is the same as the order of
the corresponding elements of list . If an element, for which func returns true appears several
times in list it will also appear the same number of times in the result. list may contain holes,
they are ignored by Filtered. func must return either true or false for every element of
list , otherwise an error is signalled.

gap> Filtered( [1..20], IsPrime );
[ 2, 3, 5, 7, 11, 13, 17, 19 ]
gap> Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );
[ 3, 4, 4, 7 ]
gap> Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0 );
[ 3, 7 ]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument list (see 3.8).

Sublist (see 3.20) allows you to extract elements of a list according to indices given in another
list.

3.25 ForAll

ForAll( list, func )

ForAll returns true if the unary function func returns true for all elements of the list list
and false otherwise. list may contain holes. func must return either true or false for every
element of list , otherwise an error is signalled.

gap> ForAll( [1..20], IsPrime );
false
gap> ForAll( [2,3,4,5,8,9], IsPrimePowerInt );
true
gap> ForAll( [2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0 );
true

ForAny (see 3.26) allows you to test if any element of a list satisfies a certain property.

3.26 ForAny

ForAny( list, func )

ForAny returns true if the unary function func returns true for at least one element of the
list list and false otherwise. list may contain holes. func must return either true or false
for every element of list , otherwise ForAny signals an error.
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gap> ForAny( [1..20], IsPrime );
true
gap> ForAny( [2,3,4,5,8,9], IsPrimePowerInt );
true
gap> ForAny( [2..14],
> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n) );
false

ForAll (see 3.25) allows you to test if all elements of a list satisfies a certain propertie.

3.27 First

First( list, func )

First returns the first element of the list list for which the unary function func returns
true. list may contain holes. func must return either true or false for every element of
list , otherwise an error is signalled. If func returns false for every element of list an error is
signalled.

gap> First( [10^7..10^8], IsPrime );
10000019
gap> First( [10^5..10^6],
> n -> not IsPrime(n) and IsPrimePowerInt(n) );
100489

PositionProperty (see 3.16) allows you to find the position of the first element in a list that
satisfies a certain property.

3.28 Sort

Sort( list )
Sort( list, func )

Sort sorts the list list in increasing order, using shellsort. In the first form Sort uses the
operator < to compare the elements. In the second form Sort uses the function func to
compare elements. This function must be a function taking two arguments that returns true
if the first is strictly smaller than the second and false otherwise.

Sort does not return anything, since it changes the argument list . Use ShallowCopy (see
5.12) if you want to keep list . Use Reversed (see 3.19) if you want to get a new list sorted in
decreasing order.

It is possible to sort lists that contain multiple elements which compare equal. It is not
guaranteed that those elements keep their relative order, i.e., Sort is not stable.

gap> list := [ 5, 4, 6, 1, 7, 5 ];; Sort( list ); list;
[ 1, 4, 5, 5, 6, 7 ]
gap> list := [ [0,6], [1,2], [1,3], [1,5], [0,4], [3,4] ];;
gap> Sort( list, function(v,w) return v*v < w*w; end ); list;
[ [ 1, 2 ], [ 1, 3 ], [ 0, 4 ], [ 3, 4 ], [ 1, 5 ], [ 0, 6 ] ]
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# sorted according to the Euclidian distance from [0,0]
gap> list := [ [0,6], [1,3], [3,4], [1,5], [1,2], [0,4], ];;
gap> Sort( list, function(v,w) return v[1] < w[1]; end ); list;
[ [ 0, 6 ], [ 0, 4 ], [ 1, 3 ], [ 1, 5 ], [ 1, 2 ], [ 3, 4 ] ]
# note the random order of the elements with equal first component

SortParallel (see 3.29) allows you to sort a list and apply the exchanges that are necessary
to another list in parallel. Sortex (see 3.30) sorts a list and returns the sorting permutation.

3.29 SortParallel

SortParallel( list1, list2 )
SortParallel( list1, list2, func )

SortParallel sorts the list list1 in increasing order just as Sort (see 3.28) does. In parallel
it applies the same exchanges that are necessary to sort list1 to the list list2 , which must of
course have at least as many elements as list1 does.

gap> list1 := [ 5, 4, 6, 1, 7, 5 ];;
gap> list2 := [ 2, 3, 5, 7, 8, 9 ];;
gap> SortParallel( list1, list2 );
gap> list1;
[ 1, 4, 5, 5, 6, 7 ]
gap> list2;
[ 7, 3, 2, 9, 5, 8 ] # [ 7, 3, 9, 2, 5, 8 ] is also possible

Sortex (see 3.30) sorts a list and returns the sorting permutation.

3.30 Sortex

Sortex( list )

Sortex sorts the list list and returns the permutation that must be applied to list to obtain
the sorted list.

gap> list1 := [ 5, 4, 6, 1, 7, 5 ];;
gap> list2 := Copy( list1 );;
gap> perm := Sortex( list1 );
(1,3,5,6,4)
gap> list1;
[ 1, 4, 5, 5, 6, 7 ]
gap> Permuted( list2, perm );
[ 1, 4, 5, 5, 6, 7 ]

Permuted (see 3.31) allows you to rearrange a list according to a given permutation.
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3.31 Permuted

Permuted( list, perm )

Permuted returns a new list new that contains the elements of the list list permuted according
to the permutation perm. That is new[i^perm] = list[i].

gap> Permuted( [ 5, 4, 6, 1, 7, 5 ], (1,3,5,6,4) );
[ 1, 4, 5, 5, 6, 7 ]

Sortex (see 3.30) allows you to compute the permutation that must be applied to a list to
get the sorted list.

3.32 Product

Product( list )
Product( list, func )

In the first form Product returns the product of the elements of the list list , which must have
no holes. If list is empty, the integer 1 is returned.

In the second form Product applies the function func to each element of the list list , which
must have no holes, and multiplies the results. If the list is empty, the integer 1 is returned.

gap> Product( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );
9699690
gap> Product( [1..10], x->x^2 );
13168189440000
gap> Product( [ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) ] );
(1,4)(2,3)

Sum (see 3.33) computes the sum of the elements of a list.

3.33 Sum

Sum( list )
Sum( list, func )

In the first form Sum returns the sum of the elements of the list list , which must have no
holes. If list is empty 0 is returned.

In the second form Sum applies the function func to each element of the list list , which must
have no holes, and sums the results. If the list is empty 0 is returned.

gap> Sum( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );
77
gap> Sum( [1..10], x->x^2 );
385
gap> Sum( [ [1,2], [3,4], [5,6] ] );
[ 9, 12 ]

Product (see 3.32) computes the product of the elements of a list.
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3.34 Maximum

Maximum( obj1, obj2.. )
Maximum( list )

Maximum returns the maximum of its arguments, i.e., that argument obji for which objk <=
obji for all k. In its second form Maximum takes a list list and returns the maximum of the
elements of this list.

Typically the arguments or elements of the list respectively will be integers, but actually they
can be objects of an arbitrary type. This works because any two objects can be compared
using the < operator.

gap> Maximum( -123, 700, 123, 0, -1000 );
700
gap> Maximum( [ -123, 700, 123, 0, -1000 ] );
700
gap> Maximum( [ 1, 2 ], [ 0, 15 ], [ 1, 5 ], [ 2, -11 ] );
[ 2, -11 ] # lists are compared elementwise

3.35 Minimum

Minimum( obj1, obj2.. )
Minimum( list )

Minimum returns the minimum of its arguments, i.e., that argument obji for which obji <= objk
for all k. In its second form Minimum takes a list list and returns the minimum of the elements
of this list.

Typically the arguments or elements of the list respectively will be integers, but actually they
can be objects of an arbitrary type. This works because any two objects can be compared
using the < operator.

gap> Minimum( -123, 700, 123, 0, -1000 );
-1000
gap> Minimum( [ -123, 700, 123, 0, -1000 ] );
-1000
gap> Minimum( [ 1, 2 ], [ 0, 15 ], [ 1, 5 ], [ 2, -11 ] );
[ 0, 15 ] # lists are compared elementwise

3.36 Iterated

Iterated( list, f )

Iterated returns the result of the iterated application of the function f , which must take
two arguments, to the elements of list . More precisely Iterated returns the result of the
following application, f (..f ( f ( list[1], list[2] ), list[3] ),..,list[n] ).

gap> Iterated( [ 126, 66, 105 ], Gcd );
3
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3.37 RandomList

RandomList( list )

RandomList returns a random element of the list list . The results are equally distributed,
i.e., all elements are equally likely to be selected.

gap> RandomList( [1..200] );
192
gap> RandomList( [1..200] );
152
gap> RandomList( [ [ 1, 2 ], 3, [ 4, 5 ], 6 ] );
[ 4, 5 ]

RandomSeed( n )

RandomSeed seeds the pseudo random number generator RandomList. Thus to reproduce a
computation exactly you can call RandomSeed each time before you start the computation.
When GAP is started the pseudo random number generator is seeded with 1.

gap> RandomSeed(1); RandomList([1..100]); RandomList([1..100]);
96
76
gap> RandomSeed(1); RandomList([1..100]); RandomList([1..100]);
96
76

RandomList is called by all random functions for domains.
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Sets

A very important mathematical concept, maybe the most important of all, are sets. Mathe-
matically a set is an abstract object such that each object is either an element of the set or
it is not. So a set is a collection like a list, and in fact GAP uses lists to represent sets. Note
that this of course implies that GAP only deals with finite sets.

Unlike a list a set must not contain an element several times. It simply makes no sense to
say that an object is twice an element of a set, because an object is either an element of a
set, or it is not. Therefore the list that is used to represent a set has no duplicates, that is,
no two elements of such a list are equal.

Also unlike a list a set does not impose any ordering on the elements. Again it simply makes
no sense to say that an object is the first or second etc. element of a set, because, again, an
object is either an element of a set, or it is not. Since ordering is not defined for a set we can
put the elements in any order into the list used to represent the set. We put the elements
sorted into the list, because this ordering is very practical. For example if we convert a list
into a set we have to remove duplicates, which is very easy to do after we have sorted the list,
since then equal elements will be next to each other.

In short sets are represented by sorted lists without holes and duplicates in GAP. Such a list
is in this document called a proper set. Note that we guarantee this representation, so you
may make use of the fact that a set is represented by a sorted list in your functions.

In some contexts, we also want to talk about multisets. A multiset is like a set, except that
an element may appear several times in a multiset. Such multisets are represented by sorted
lists with holes that may have duplicates.

The first section in this chapter describes the functions to test if an object is a set and to
convert objects to sets (see 4.1 and 4.2).

The next section describes the function that tests if two sets are equal (see 4.3).

The next sections describe the destructive functions that compute the standard set operations
for sets (see 4.4, 4.5, 4.6, 4.7, and 4.8).

The last section tells you more about sets and their internal representation (see 4.10).

All set theoretic functions, especially Intersection and Union, also accept sets as arguments.
Thus all functions described in the chapter Domains in the GAP-manual are applicable to sets
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(see 4.9).

Since sets are just a special case of lists, all the operations and functions for lists, especially
the membership test (see 3.13), can be used for sets just as well.

4.1 IsSet

IsSet( obj )

IsSet returns true if the object obj is a set and false otherwise. An object is a set if it is a
sorted lists without holes or duplicates. Will cause an error if evaluation of obj is an unbound
variable.

gap> IsSet( [] );
true
gap> IsSet( [ 2, 3, 5, 7, 11 ] );
true
gap> IsSet( [, 2, 3,, 5,, 7,,,, 11 ] );
false # this list contains holes
gap> IsSet( [ 11, 7, 5, 3, 2 ] );
false # this list is not sorted
gap> IsSet( [ 2, 2, 3, 5, 5, 7, 11, 11 ] );
false # this list contains duplicates
gap> IsSet( 235711 );
false # this argument is not even a list

4.2 Set

Set( list )

Set returns a new proper set, which is represented as a sorted list without holes or duplicates,
containing the elements of the list list .

Set returns a new list even if the list list is already a proper set, in this case it is equivalent
to ShallowCopy (see 5.12). Thus the result is a new list that is not identical to any other
list. The elements of the result are however identical to elements of list . If list contains equal
elements, it is not specified to which of those the element of the result is identical (see 3.8).

gap> Set( [3,2,11,7,2,,5] );
[ 2, 3, 5, 7, 11 ]
gap> Set( [] );
[ ]

4.3 SetIsEqual

SetIsEqual( list1, list2 )

SetIsEqual returns true if the two lists list1 and list2 are equal when viewed as sets, and
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false otherwise. list1 and list2 are equal if every element of list1 is also an element of list2
and if every element of list2 is also an element of list1 .

If both lists are proper sets then they are of course equal if and only if they are also equal
as lists. Thus SetIsEqual( list1, list2 ) is equivalent to Set( list1 ) = Set( list2 ) (see
4.2), but the former is more efficient.

gap> SetIsEqual( [2,3,5,7,11], [11,7,5,3,2] );
true
gap> SetIsEqual( [2,3,5,7,11], [2,3,5,7,11,13] );
false

4.4 SetAdd

SetAdd( set, elm )

SetAdd adds elm, which may be an elment of an arbitrary type, to the set set , which must
be a proper set, otherwise an error will be signalled. If elm is already an element of the set
set , the set is not changed. Otherwise elm is inserted at the correct position such that set is
again a set afterwards.

gap> s := [2,3,7,11];;
gap> SetAdd( s, 5 ); s;
[ 2, 3, 5, 7, 11 ]
gap> SetAdd( s, 13 ); s;
[ 2, 3, 5, 7, 11, 13 ]
gap> SetAdd( s, 3 ); s;
[ 2, 3, 5, 7, 11, 13 ]

SetRemove (see 4.5) is the counterpart of SetAdd.

4.5 SetRemove

SetRemove( set, elm )

SetRemove removes the element elm, which may be an object of arbitrary type, from the set
set , which must be a set, otherwise an error will be signalled. If elm is not an element of set
nothing happens. If elm is an element it is removed and all the following elements in the list
are moved one position forward.

gap> s := [ 2, 3, 4, 5, 6, 7 ];;
gap> SetRemove( s, 6 );
gap> s;
[ 2, 3, 4, 5, 7 ]
gap> SetRemove( s, 10 );
gap> s;
[ 2, 3, 4, 5, 7 ]

SetAdd (see 4.4) is the counterpart of SetRemove.
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4.6 SetUnite

SetUnite( set1, set2 )

SetUnite unites the set set1 with the set set2 . This is equivalent to adding all the elements
in set2 to set1 (see 4.4). set1 must be a proper set, otherwise an error is signalled. set2 may
also be list that is not a proper set, in which case SetUnite silently applies Set to it first (see
4.2). SetUnite returns nothing, it is only called to change set1 .

gap> set := [ 2, 3, 5, 7, 11 ];;
gap> SetUnite( set, [ 4, 8, 9 ] ); set;
[ 2, 3, 4, 5, 7, 8, 9, 11 ]
gap> SetUnite( set, [ 16, 9, 25, 13, 16 ] ); set;
[ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25 ]

The function UnionSet (see 4.9) is the nondestructive counterpart to the destructive proce-
dure SetUnite.

4.7 SetIntersect

SetIntersect( set1, set2 )

SetIntersect intersects the set set1 with the set set2 . This is equivalent to removing all
the elements that are not in set2 from set1 (see 4.5). set1 must be a set, otherwise an error
is signalled. set2 may be a list that is not a proper set, in which case SetIntersect silently
applies Set to it first (see 4.2). SetIntersect returns nothing, it is only called to change
set1 .

gap> set := [ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16 ];;
gap> SetIntersect( set, [ 3, 5, 7, 9, 11, 13, 15, 17 ] ); set;
[ 3, 5, 7, 9, 11, 13 ]
gap> SetIntersect( set, [ 9, 4, 6, 8 ] ); set;
[ 9 ]

The function IntersectionSet (see 4.9) is the nondestructive counterpart to the destructive
procedure SetIntersect.

4.8 SetSubtract

SetSubtract( set1, set2 )

SetSubtract subtracts the set set2 from the set set1 . This is equivalent to removing all
the elements in set2 from set1 (see 4.5). set1 must be a proper set, otherwise an error is
signalled. set2 may be a list that is not a proper set, in which case SetSubtract applies Set
to it first (see 4.2). SetSubtract returns nothing, it is only called to change set1 .

gap> set := [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];;
gap> SetSubtract( set, [ 6, 10 ] ); set;
[ 2, 3, 4, 5, 7, 8, 9, 11 ]
gap> SetSubtract( set, [ 9, 4, 6, 8 ] ); set;
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[ 2, 3, 5, 7, 11 ]

The function Difference is the nondestructive counterpart to destructive the procedure
SetSubtract.

4.9 Set Functions for Sets

As was already mentioned in the introduction to this chapter all domain functions also accept
sets as arguments. Thus all functions described in the chapter Domains in the GAP-manual
are applicable to sets. This section describes those functions where it might be helpful to
know the implementation of those functions for sets.

IsSubset( set1, set2 )

This is implemented by SetIsSubset, which you can call directly to save a little bit of time.
Either argument to SetIsSubset may also be a list that is not a proper set, in which case
IsSubset silently applies Set (see 4.2) to it first.

Union( set1, set2 )

This is implemented by UnionSet, which you can call directly to save a little bit of time.
Note that UnionSet only accepts two sets, unlike Union, which accepts several sets or a list
of sets. The result of UnionSet is a new set, represented as a sorted list without holes or
duplicates. Each argument to UnionSet may also be a list that is not a proper set, in which
case UnionSet silently applies Set (see 4.2) to this argument. UnionSet is implemented in
terms of its destructive counterpart SetUnite (see 4.6).

Intersection( set1, set2 )

This is implemented by IntersectionSet, which you can call directly to save a little bit of
time. Note that IntersectionSet only accepts two sets, unlike Intersection, which accepts
several sets or a list of sets. The result of IntersectionSet is a new set, represented as a
sorted list without holes or duplicates. Each argument to IntersectionSet may also be a
list that is not a proper set, in which case IntersectionSet silently applies Set (see 4.2)
to this argument. IntersectionSet is implemented in terms of its destructive counterpart
SetIntersect (see 4.7).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to
any other list. The elements of that list however are identical to the corresponding elements
of set1 . If set1 is not a proper list it is not specified to which of a number of equal elements
in set1 the element in the result is identical (see 3.8).

4.10 More about Sets

In the previous section we defined a proper set as a sorted list without holes or duplicates.
This representation is not only nice to use, it is also a good internal representation supporting
efficient algorithms. For example the in operator can use binary instead of a linear search
since a set is sorted. For another example Union only has to merge the sets.

However, all those set functions also allow lists that are not proper sets, silently making a
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copy of it and converting this copy to a set. Suppose all the functions would have to test their
arguments every time, comparing each element with its successor, to see if they are proper
sets. This would chew up most of the performance advantage again. For example suppose in
would have to run over the whole list, to see if it is a proper set, so it could use the binary
search. That would be ridiculous.

To avoid this a list that is a proper set may, but need not, have an internal flag set that tells
those functions that this list is indeed a proper set. Those functions do not have to check
this argument then, and can use the more efficient algorithms. This section tells you when
a proper set obtains this flag, so you can write your functions in such a way that you make
best use of the algorithms.

The results of Set, Difference, Intersection and Union are known to be sets by construc-
tion, and thus have the flag set upon creation.

If an argument to IsSet, SetIsEqual, IsSubset, Set, Difference, Intersection or Union
is a proper set, that does not yet have the flag set, those functions will notice that and set
the flag for this set. Note that in will use linear search if the right operand does not have
the flag set, will therefore not detect if it is a proper set and will, unlike the functions above,
never set the flag.

If you change a proper set, that does have this flag set, by assignment, Add or Append the set
will generally lose it flag, even if the change is such that the resulting list is still a proper set.
However if the set has more than 100 elements and the value assigned or added is not a list
and not a record and the resulting list is still a proper set than it will keep the flag. Note
that changing a list that is not a proper set will never set the flag, even if the resulting list is
a proper set. Such a set will obtain the flag only if it is passed to a set function.

Suppose you have built a proper set in such a way that it does not have the flag set, and that
you now want to perform lots of membership tests. Then you should call IsSet with that set
as an argument. If it is indeed a proper set IsSet will set the flag, and the subsequent in
operations will use the more efficient binary search. You can think of the call to IsSet as a
hint to GAP that this list is a proper set.

There is no way you can set the flag for an ordinary list without going through the checking
in IsSet. The internal functions depend so much on the fact that a list with this flag set
is indeed sorted and without holes and duplicates that the risk would be too high to allow
setting the flag without such a check.
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Records

Records are next to lists the most important way to collect objects together. A record is a
collection of components. Each component has a unique name, which is an identifier that
distinguishes this component, and a value, which is an object of arbitrary type. We often
abbreviate value of a component to element. We also say that a record contains its
elements. You can access and change the elements of a record using its name.

Record literals are written by writing down the components in order between rec( and ),
and separating them by commas ,. Each component consists of the name, the assignment
operator :=, and the value. The empty record, i.e., the record with no components, is
written as rec().

gap> rec( a := 1, b := "2" ); # a record with two components
rec(
a := 1,
b := "2" )

gap> rec( a := 1, b := rec( c := 2 ) ); # record may contain records
rec(
a := 1,
b := rec(

c := 2 ) )

Records usually contain elements of various types, i.e., they are usually not homogeneous like
lists.

The first section in this chapter tells you how you can access the elements of a record (see
5.1).

The next sections tell you how you can change the elements of a record (see 5.2 and 5.3).

The next sections describe the operations that are available for records (see 5.4, 5.5, 5.6, and
5.7).

The next section describes the function that tests if an object is a record (see 5.8).

The next sections describe the functions that test whether a record has a component with
a given name, and delete such a component (see 5.9 and 5.10). Those functions are also
applicable to lists.

57
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The final sections describe the functions that create a copy of a record (see 5.11 and 5.12).
Again those functions are also applicable to lists.

5.1 Accessing Record Elements

rec.name

The above construct evaluates to the value of the record component with the name name in
the record rec. Note that the name is not evaluated, i.e., it is taken literal.

gap> r := rec( a := 1, b := 2 );;
gap> r.a;
1
gap> r.b;
2

rec.(name)

This construct is similar to the above construct. The difference is that the second operand
name is evaluated. It must evaluate to a string or an integer otherwise an error is signalled.
The construct then evaluates to the element of the record rec whose name is, as a string,
equal to name.

gap> old := rec( a := 1, b := 2 );;
gap> new := rec();
rec(

)
gap> for i in RecFields( old ) do
> new.(i) := old.(i);
> od;
gap> new;
rec(
a := 1,
b := 2 )

If rec does not evaluate to a record, or if name does not evaluate to a string, or if rec.name
is unbound, an error is signalled. As usual you can leave the break loop with quit;. On
the other hand you can return a result to be used in place of the record element by return
expr;.

5.2 Record Assignment

rec.name := obj;

The record assignment assigns the object obj , which may be an object of arbitrary type, to
the record component with the name name, which must be an identifier, of the record rec.
That means that accessing the element with name name of the record rec will return obj
after this assignment. If the record rec has no component with the name name, the record is
automatically extended to make room for the new component.
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gap> r := rec( a := 1, b := 2 );;
gap> r.a := 10;; r;
rec(
a := 10,
b := 2 )

gap> r.c := 3;; r;
rec(
a := 10,
b := 2,
c := 3 )

The function IsBound (see 5.9) can be used to test if a record has a component with a certain
name, the function Unbind (see 5.10) can be used to remove a component with a certain name
again.

Note that assigning to a record changes the record. The ability to change an object is only
available for lists and records (see 5.3).

rec.(name) = obj;

This construct is similar to the above construct. The difference is that the second operand
name is evaluated. It must evaluate to a string or an integer otherwise an error is signalled.
The construct then assigns obj to the record component of the record rec whose name is, as
a string, equal to name.

If rec does not evaluate to a record, name does not evaluate to a string, or obj is a call to
a function that does not return a value, e.g., Print, an error is signalled. As usual you can
leave the break loop with quit;. On the other hand you can continue the assignment by
returning a record in the first case, a string in the second, or an object to be assigned in the
third, using return expr;.

5.3 Identical Records

With the record assignment (see 5.2) it is possible to change a record. The ability to change an
object is only available for lists and records. This section describes the semantic consequences
of this fact.

You may think that in the following example the second assignment changes the integer, and
that therefore the above sentence, which claimed that only records and lists can be changed,
is wrong.

i := 3;
i := i + 1;

But in this example not the integer 3 is changed by adding one to it. Instead the variable
i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the following example

r := rec( a := 1 );
r := rec( a := 1, b := 2 );

The second assignment does not change the first record, instead it assigns a new record to the



60 CHAPTER 5. RECORDS

variable r. On the other hand, in the following example the record is changed by the second
assignment.

r := rec( a := 1 );
r.b := 2;

To understand the difference first think of a variable as a name for an object. The important
point is that a record can have several names at the same time. An assignment var :=
record; means in this interpretation that var is a name for the object record . At the end
of the following example r2 still has the value rec( a := 1 ) as this record has not been
changed and nothing else has been assigned to r2.

r1 := rec( a := 1 );
r2 := r1;
r1 := rec( a := 1, b := 2 );

But after the following example the record for which r2 is a name has been changed and thus
the value of r2 is now rec( a := 1, b := 2 ).

r1 := rec( a := 1 );
r2 := r1;
r1.b := 2;

We shall say that two records are identical if changing one of them by a record assignment
also changes the other one. This is slightly incorrect, because if two records are identical,
there are actually only two names for one record. However, the correct usage would be very
awkward and would only add to the confusion. Note that two identical records must be equal,
because there is only one records with two different names. Thus identity is an equivalence
relation that is a refinement of equality.

Let us now consider under which circumstances two records are identical.

If you enter a record literal then the record denoted by this literal is a new record that is
not identical to any other record. Thus in the following example r1 and r2 are not identical,
though they are equal of course.

r1 := rec( a := 1 );
r2 := rec( a := 1 );

Also in the following example, no records in the list l are identical.

l := [];
for i in [1..10] do

l[i] := rec( a := 1 );
od;

If you assign a record to a variable no new record is created. Thus the record value of the
variable on the left hand side and the record on the right hand side of the assignment are
identical. So in the following example r1 and r2 are identical records.

r1 := rec( a := 1 );
r2 := r1;

If you pass a record as argument, the old record and the argument of the function are identical.
Also if you return a record from a function, the old record and the value of the function call
are identical. So in the following example r1 and r2 are identical record
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r1 := rec( a := 1 );
f := function ( r ) return r; end;
r2 := f( r1 );

The functions Copy and ShallowCopy (see 5.11 and 5.12) accept a record and return a new
record that is equal to the old record but that is not identical to the old record. The difference
between Copy and ShallowCopy is that in the case of ShallowCopy the corresponding elements
of the new and the old records will be identical, whereas in the case of Copy they will only be
equal. So in the following example r1 and r2 are not identical records.

r1 := rec( a := 1 );
r2 := Copy( r1 );

If you change a record it keeps its identity. Thus if two records are identical and you change
one of them, you also change the other, and they are still identical afterwards. On the other
hand, two records that are not identical will never become identical if you change one of them.
So in the following example both r1 and r2 are changed, and are still identical.

r1 := rec( a := 1 );
r2 := r1;
r1.b := 2;

5.4 Comparisons of Records

rec1 = rec2
rec1 <> rec2

The equality operator = returns true if the record rec1 is equal to the record rec2 and false
otherwise. The inequality operator <> returns true if the record rec1 is not equal to rec2
and false otherwise.

Usually two records are considered equal, if for each component of one record the other
record has a component of the same name with an equal value and vice versa. You can
also compare records with other objects, they are of course different, unless the record has a
special comparison function (see below) that says otherwise.

gap> rec( a := 1, b := 2 ) = rec( b := 2, a := 1 );
true
gap> rec( a := 1, b := 2 ) = rec( a := 2, b := 1 );
false
gap> rec( a := 1 ) = rec( a := 1, b := 2 );
false
gap> rec( a := 1 ) = 1;
false

However a record may contain a special operations record that contains a function that is
called when this record is an operand of a comparison. The precise mechanism is as follows.
If the operand of the equality operator = is a record, and if this record has an element with
the name operations that is a record, and if this record has an element with the name =
that is a function, then this function is called with the operands of = as arguments, and the
value of the operation is the result returned by this function. In this case a record may also
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be equal to an object of another type if this function says so. It is probably not a good idea
to define a comparison function in such a way that the resulting relation is not an equivalence
relation, i.e., not reflexive, symmetric, and transitive. Note that there is no corresponding <>
function, because left <> right is implemented as not left = right .

The following example shows one piece of the definition of residue classes, using record opera-
tions. Of course this is far from a complete implementation. Note that the = must be quoted,
so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec( );;
gap> ResidueClassOps.\= := function ( l, r )
> return (l.modulus = r.modulus)
> and (l.representative-r.representative) mod l.modulus = 0;
> end;;
gap> ResidueClass := function ( representative, modulus )
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps );
> end;;
gap> l := ResidueClass( 13, 23 );;
gap> r := ResidueClass( -10, 23 );;
gap> l = r;
true
gap> l = ResidueClass( 10, 23 );
false

rec1 <rec2
rec1 <= rec2
rec1 > rec2
rec1 >= rec2

The operators <, <=, >, and >= evaluate to true if the record rec1 is less than, less than or
equal to, greater than, and greater than or equal to the record rec2 , and to false otherwise.

To compare records we imagine that the components of both records are sorted according
to their names. Then the records are compared lexicographically with unbound elements
considered smaller than anything else. Precisely one record rec1 is considered less than
another record rec2 if rec2 has a component with name name2 and either rec1 has no
component with this name or rec1.name2 <rec2.name2 and for each component of rec1 with
name name1 <name2 rec2 has a component with this name and rec1.name1 = rec2.name1 .
Records may also be compared with objects of other types, they are greater than anything
else, unless the record has a special comparison function (see below) that says otherwise.

gap> rec( a := 1, b := 2 ) < rec( b := 2, a := 1 );
false # they are equal
gap> rec( a := 1, b := 2 ) < rec( a := 2, b := 0 );
true # the a elements are compared first and 1 is less than 2
gap> rec( a := 1 ) < rec( a := 1, b := 2 );
true # unbound is less than 2
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gap> rec( a := 1 ) < rec( a := 0, b := 2 );
false # the a elements are compared first and 0 is less than 1
gap> rec( b := 1 ) < rec( b := 0, a := 2 );
true # the a-s are compared first and unbound is less than 2
gap> rec( a := 1 ) < 1;
false # other objects are less than records

However a record may contain a special operations record that contains a function that is
called when this record is an operand of a comparison. The precise mechanism is as follows.
If the operand of the equality operator < is a record, and if this record has an element with
the name operations that is a record, and if this record has an element with the name < that
is a function, then this function is called with the operands of < as arguments, and the value
of the operation is the result returned by this function. In this case a record may also be
smaller than an object of another type if this function says so. It is probably not a good idea
to define a comparison function in such a way that the resulting relation is not an ordering
relation, i.e., not antisymmetric, and transitive. Note that there are no corresponding <=, >,
and >= functions, since those operations are implemented as not right <left , right <left , and
not left <right respectively.

The following example shows one piece of the definition of residue classes, using record opera-
tions. Of course this is far from a complete implementation. Note that the < must be quoted,
so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec( );;
gap> ResidueClassOps.\< := function ( l, r )
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> return l.representative mod l.modulus
> < r.representative mod r.modulus;
> end;;
gap> ResidueClass := function ( representative, modulus )
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps );
> end;;
gap> l := ResidueClass( 13, 23 );;
gap> r := ResidueClass( -1, 23 );;
gap> l < r;
true # 13 is less than 22
gap> l < ResidueClass( 10, 23 );
false # 10 is less than 13

5.5 Operations for Records

Usually no operations are defined for record. However a record may contain a special
operations record that contains functions that are called when this record is an operand
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of a binary operation. This mechanism is detailed below for the addition.

obj + rec, rec + obj

If either operand is a record, and if this record contains an element with name operations
that is a record, and if this record in turn contains an element with the name + that is a
function, then this function is called with the two operands as arguments, and the value of
the addition is the value returned by that function. If both operands are records with such
a function rec.operations.+, then the function of the right operand is called. If either
operand is a record, but neither operand has such a function rec.operations.+, an error is
signalled.

obj - rec, rec - obj
obj * rec, rec * obj
obj / rec, rec / obj
obj mod rec, rec mod obj
obj ^ rec, rec ^ obj

This is evaluated similar, but the functions must obviously be called -, *, /, mod, ^ respectively.

The following example shows one piece of the definition of a residue classes, using record
operations. Of course this is far from a complete implementation. Note that the * must be
quoted, so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec( );;
gap> ResidueClassOps.\* := function ( l, r )
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> return rec(
> representative := (l.representative * r.representative)
> mod l.modulus,
> modulus := l.modulus,
> operations := ResidueClassOps );
> end;;
gap> ResidueClass := function ( representative, modulus )
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps );
> end;;
gap> l := ResidueClass( 13, 23 );;
gap> r := ResidueClass( -1, 23 );;
gap> s := l * r;
rec(
representative := 10,
modulus := 23,
operations := rec(

* := function ( l, r ) ... end ) )
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5.6 In for Records

element in rec

Usually the membership test is only defined for lists. However a record may contain a special
operations record, that contains a function that is called when this record is the right
operand of the in operator. The precise mechanism is as follows.

If the right operand of the in operator is a record, and if this record contains an element with
the name operations that is a record, and if this record in turn contains an element with the
name in that is a function, then this function is called with the two operands as arguments,
and the value of the membership test is the value returned by that function. The function
should of course return true or false.

The following example shows one piece of the definition of residue classes, using record op-
erations. Of course this is far from a complete implementation. Note that the in must be
quoted, so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec( );;
gap> ResidueClassOps.\in := function ( l, r )
> if IsInt( l ) then
> return (l - r.representative) mod r.modulus = 0;
> else
> return false;
> fi;
> end;;
gap> ResidueClass := function ( representative, modulus )
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps );
> end;;
gap> l := ResidueClass( 13, 23 );;
gap> -10 in l;
true
gap> 10 in l;
false

5.7 Printing of Records

Print( rec )

If a record is printed by Print or by the main loop, it is usually printed as record literal, i.e.,
as a sequence of components, each in the format name := value, separated by commas and
enclosed in rec( and ).

gap> r := rec();; r.a := 1;; r.b := 2;;
gap> r;
rec(



66 CHAPTER 5. RECORDS

a := 1,
b := 2 )

But if the record has an element with the name operations that is a record, and if this
record has an element with the name Print that is a function, then this function is called
with the record as argument. This function must print whatever the printed representation
of the record should look like.

The following example shows one piece of the definition of residue classes, using record opera-
tions. Of course this is far from a complete implementation. Note that it is typical for records
that mimic group elements to print as a function call that, when evaluated, will create this
group element record.

gap> ResidueClassOps := rec( );;
gap> ResidueClassOps.Print := function ( r )
> Print( "ResidueClass( ",
> r.representative mod r.modulus, ", ",
> r.modulus, " )" );
> end;;
gap> ResidueClass := function ( representative, modulus )
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps );
> end;;
gap> l := ResidueClass( 33, 23 );
ResidueClass( 10, 23 )

5.8 IsRec

IsRec( obj )

IsRec returns true if the object obj , which may be an object of arbitrary type, is a record,
and false otherwise. Will signal an error if obj is a variable with no assigned value.

gap> IsRec( rec( a := 1, b := 2 ) );
true
gap> IsRec( IsRec );
false

5.9 IsBound

IsBound( rec.name )
IsBound( list[n] )

In the first form IsBound returns true if the record rec has a component with the name
name, which must be an ident and false otherwise. rec must evaluate to a record, otherwise
an error is signalled.
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In the second form IsBound returns true if the list list has a element at the position n, and
false otherwise. list must evaluate to a list, otherwise an error is signalled.

gap> r := rec( a := 1, b := 2 );;
gap> IsBound( r.a );
true
gap> IsBound( r.c );
false
gap> l := [ , 2, 3, , 5, , 7, , , , 11 ];;
gap> IsBound( l[7] );
true
gap> IsBound( l[4] );
false
gap> IsBound( l[101] );
false

Note that IsBound is special in that it does not evaluate its argument, otherwise it would
always signal an error when it is supposed to return false.

5.10 Unbind

Unbind( rec.name )
Unbind( list[n] )

In the first form Unbind deletes the component with the name name in the record rec. That
is, after execution of Unbind, rec no longer has a record component with this name. Note that
it is not an error to unbind a nonexisting record component. rec must evaluate to a record,
otherwise an error is signalled.

In the second form Unbind deletes the element at the position n in the list list . That is, after
execution of Unbind, list no longer has an assigned value at the position n. Note that it is
not an error to unbind a nonexisting list element. list must evaluate to a list, otherwise an
error is signalled.

gap> r := rec( a := 1, b := 2 );;
gap> Unbind( r.a ); r;
rec(
b := 2 )

gap> Unbind( r.c ); r;
rec(
b := 2 )

gap> l := [ , 2, 3, 5, , 7, , , , 11 ];;
gap> Unbind( l[3] ); l;
[ , 2,, 5,, 7,,,, 11 ]
gap> Unbind( l[4] ); l;
[ , 2,,,, 7,,,, 11 ]

Note that Unbind does not evaluate its argument, otherwise there would be no way for Unbind
to tell which component to remove in which record, because it would only receive the value
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of this component.

5.11 Copy

Copy( obj )

Copy returns a copy new of the object obj . You may apply Copy to objects of any type, but
for objects that are not lists or records Copy simply returns the object itself.

For lists and records the result is a new list or record that is not identical to any other list
or record (see 3.8 and 5.3). This means that you may modify this copy new by assignments
(see 3.5 and 5.2) or by adding elements to it (see 3.6 and 3.7), without modifying the original
object obj .

gap> list1 := [ 1, 2, 3 ];;
gap> list2 := Copy( list1 );
[ 1, 2, 3 ]
gap> list2[1] := 0;; list2;
[ 0, 2, 3 ]
gap> list1;
[ 1, 2, 3 ]

That Copy returns the object itself if it is not a list or a record is consistent with this definition,
since there is no way to change the original object obj by modifying new , because in fact
there is no way to change the object new .

Copy basically executes the following code for lists, and similar code for records.

new := [];
for i in [1..Length(obj)] do

if IsBound(obj[i]) then
new[i] := Copy( obj[i] );

fi;
od;

Note that Copy recursively copies all elements of the object obj . If you only want to copy the
top level use ShallowCopy (see 5.12).

gap> list1 := [ [ 1, 2 ], [ 3, 4 ] ];;
gap> list2 := Copy( list1 );
[ [ 1, 2 ], [ 3, 4 ] ]
gap> list2[1][1] := 0;; list2;
[ [ 0, 2 ], [ 3, 4 ] ]
gap> list1;
[ [ 1, 2 ], [ 3, 4 ] ]

The above code is not entirely correct. If the object obj contains a list or record twice this
list or record is not copied twice, as would happen with the above definition, but only once.
This means that the copy new and the object obj have exactly the same structure when view
as a general graph.

gap> sub := [ 1, 2 ];; list1 := [ sub, sub ];;
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gap> list2 := Copy( list1 );
[ [ 1, 2 ], [ 1, 2 ] ]
gap> list2[1][1] := 0;; list2;
[ [ 0, 2 ], [ 0, 2 ] ]
gap> list1;
[ [ 1, 2 ], [ 1, 2 ] ]

5.12 ShallowCopy

ShallowCopy( obj )

ShallowCopy returns a copy of the object obj . You may apply ShallowCopy to objects of
any type, but for objects that are not lists or records ShallowCopy simply returns the object
itself.

For lists and records the result is a new list or record that is not identical to any other list
or record (see 3.8 and 5.3). This means that you may modify this copy new by assignments
(see 3.5 and 5.2) or by adding elements to it (see 3.6 and 3.7), without modifying the original
object obj .

gap> list1 := [ 1, 2, 3 ];;
gap> list2 := ShallowCopy( list1 );
[ 1, 2, 3 ]
gap> list2[1] := 0;; list2;
[ 0, 2, 3 ]
gap> list1;
[ 1, 2, 3 ]

That ShallowCopy returns the object itself if it is not a list or a record is consistent with this
definition, since there is no way to change the original object obj by modifying new , because
in fact there is no way to change the object new .

ShallowCopy basically executes the following code for lists, and similar code for records.

new := [];
for i in [1..Length(obj)] do

if IsBound(obj[i]) then
new[i] := obj[i];

fi;
od;

Note that ShallowCopy only copies the top level. The subojects of the new object new are
identical to the corresponding subobjects of the object obj . If you want to copy recursively
use Copy (see 5.11).

5.13 RecFields

RecFields( rec )

RecFields returns a list of strings corresponding to the names of the record components of
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the record rec.

gap> r := rec( a := 1, b := 2 );;
gap> RecFields( r );
[ "a", "b" ]

Note that you cannot use the string result in the ordinary way to access or change a record
component. You must use the rec.(name) construct (see 5.1 and 5.2).


