Technische Universität Berlin

Sommersemester 06

Dr. S. Pauli M. Wagner

www.math.tu-berlin.de/~kant/Codierungstheorie

3. Übung Codierungstheorie

1. Aufgabe Shannon-Entropie

(8 Punkte)

Sei $H_n: \mathbb{R}^n_+ \longrightarrow \mathbb{R}_+$ eine symmetrische Funktion mit folgenden Eigenschaften:

- (a) H_n ist stetig
- (b) $H_2\left(\frac{1}{2}, \frac{1}{2}\right) = 1$
- (c) Es gibt eine stetige monoton wachsende Funktion $A: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ mit

$$A(n) = H_n\left(\frac{1}{n}, \dots, \frac{1}{n}\right)$$

(d)
$$H_n(p_1, p_2, \dots, p_n) = H_2(p_1, 1 - p_1) + (1 - p_1) \cdot H_{n-1}\left(\frac{p_2}{1 - p_1}, \dots, \frac{p_n}{1 - p_1}\right)$$

wobei die p_i $(i=1,\ldots,n)$ eine Wahrscheinlichkeitsverteilung beschreiben. Dann ist H_n durch diese Eigenschaften eindeutig bestimmt und $H_n(p_1,\ldots,p_n)=-\sum_{i=1}^n p_i \log_2(p_i)$

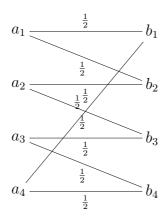
2. Aufgabe (2 Punkte)

Sei C ein binärer Single-Error-Correcting-Code von gerader Länge n. Zeige, dass $|C| \leq \frac{2^n}{n+1}$ ist.

3. Aufgabe Kapazität eines Kanals mit Rauschen

(6 Punkte)

Gegeben sind zwei Quellen $A_1 := \{a_1, a_2\}, A_2 := \{a_1, a_2, a_3, a_4\}$ ohne Gedächtnis mit maximaler Entropie und das Alphabet $B := \{b_1, b_2, b_3, b_4\}$. Im folgendem sind zwei Kanäle mit Rauschen als Graphen dargestellt. An den Kanten sind jeweils die Wahrscheinlichkeiten dass wenn a_i gesendet dann b_j empfangen wird. Berechne die Kapazitäten folgender Kanäle:



und

