
1. Group Theory I

Section 2.2

We list some consequences of Lagrange’s Theorem for expo-

nents and orders of elements which will be used later, espe-

cially in 2.6.

Definition 1.1. Let G be an arbitrary group and g an element of G. A
natural number m is called exponent of g if gm equals the unit element
e of G.

Examples If G is the Klein Four Group then 2 is an exponent of
every g ∈ G. If G is finite then |G| is an exponent for every g ∈ G. For
G = (Z,+) the non-zero elements of G have no exponents whereas 0 ∈
G has every natural number as exponent. For G = Q× := (Q \ {0},×)
the element -1 has exponent 2 and the elements g with absolute value
greater than 1 (similarly less than 1) have no exponents.

If an element g ∈ G has an exponent m then it is quite natural to
ask for the minimal exponent of g. As we saw in the previous examples
the elements g of the Klein Four Group have minimal exponents either
1 (g = e) or 2, whereas the elements g of the cyclic group of order 4 can
have minimal exponents 1,2,4. We note that the set of exponents of an
element g is a subset of N and therefore contains a (unique) minimal
element if it is not empty.

Definition 1.2. Let G be an arbitrary group and g an element of G.
If g has exponents m ∈ N then there exists a smallest exponent, the
so-called order ord(g) of g. In that case we say that g is of finite order
(otherwise infinite).

Remarks As a consequence of Lagrange’s Theorem the order of an
element g of a group G divides the group order |G| in case G is finite.
We observe that ord(e) = 1.

It will turn out useful to establish a few properties of the order
function for group elements, especially when discussing finite abelian
groups.

Lemma 1.3. Let g be an element of a group G of finite order m =
ord(g). Then we have

ord(gk) = ord(g)/gcd(k,m)

for every k ∈ Z.
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Proof We set c := gcd(k,m) and need to show that d := m/c is
the smallest exponent for mk. Clearly, d is an exponent for mk because
of (gk)d = gkd = gmk/c = (gm)k/c = ek/c = e. On the other hand, let
f be any exponent for gk. Because of e = (gk)f = gkf the element kf
must be a multiple of m, say kf = lm for an appropriate l ∈ Z. This
induces k

c
f = lm

c
and k

c
, m

c
being coprime we obtain indeed that m

c
divides f .

2

We note that we did not impose any conditions on the group G in
the previous lemma. If we want to establish a relation between the
orders of two group elements and the order of their product then we
need to assume that these elements commute. The latter will become
clear from the proof and the remarks thereafter.

Lemma 1.4. Let g, h be commuting elements of a group G with co-
prime orders m = ord(g) and n = ord(h). Then the element gh = hg
has order mn.

Proof Because of (gh)mn = gmnhmn = (gm)n(hn)m = e the prod-
uct mn is an exponent of gh. On the other hand, if f is any exponent
of gh we put c = gcd(f,m) , d := gcd(f, n) and get e = ((gh)f )m/c =
gm(f/c)hfm/c = hfm/c, respectively, e = ((gh)f )n/c = gfn/chn(f/c) =
gfn/c. From the first equation we conclude that n divides f(m/c) and
since n and m were coprime this yields n | f . The second equation
yields m | f analogously and again, n and m being coprime we obtain
that mn divides f . Hence, mn is indeed a minimal exponent for gh.

2

If the elements g, h do not commute then the order of their product
cannot be obtained so easily. We observe that in the symmetric group
S3 the product of an element of order 3 and one of order 2 has order 2
again (see ??). It can even happen that the product of two elements of
finite order has an infinite order . To see this we consider R as affine
line and let G be the group of bijective affine mappings from R onto
itself. It contains the 2 reflections g(x) = 2−x and h(x) = −x of order
2 each. Then gh 6= hg, hg(x) = x + 2 and gh(x) = x − 2 are both
translations, hence their order is infinite.

Even the case in which g, h commute but their orders are not coprime
is not immediately deducible from the preceding lemmata. We note
that the likely assumption ord(gh) = lcm(ord(g) , ord(h)) is terribly
false as the example h = g−1 demonstrates.

Lemma 1.5. Let g, h be commuting elements of a group G with orders
m = ord(g) and n = ord(h). The order of the element gh = hg divides
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d := lcm(m,n). There exist exponents u, v such that the element guhv

has order d.

Proof As in the proof of the previous lemma one immediately sees
that d is an exponent of gh. To show the last statement we consider
the prime number decompositions of m,n, respectively. We recall that
every natural number can be written as a formal infinite product over
all prime numbers in which only finitely many exponents are non-zero.
So we assume that

m =
∏

p∈P

pmp , n =
∏

p∈P

pnp

and set
u :=

∏

p∈P

mp<np

pmp , v :=
∏

p∈P

np≤mp

pnp .

Then the orders
ord(gu) :=

∏

p∈P

mp≥np

pmp

and
ord(hv) :=

∏

p∈P

mp<np

pnp

are mutually prime and the previous lemma yields

ord(guhv) :=
∏

p∈P

mp≥np

pmp

∏

p∈P

mp<np

pnp = lcm(m,n) .

2

Example Let g, h be commuting elements of a group G with m :=
ord(g) = 540, n := ord(h) = 1008, respectively. We easily calculate
m = 22335, n = 24327, u = 22, v = 32, hence we get

ord(g4) = 135, ord(h9) = 112, ord(g4h9) = 15120 .
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Section 2.6 Making use of the concept of direct products we

present the structure theorem for finite abelian groups.

We conclude this first chapter on groups by showing that every finite
abelian group is a direct product of cyclic subgroups. Our approach
is theoretically oriented at this stage but it will turn out later (see
chapter 6) that the ideas introduced here can easily be transformed
into algorithms. There they will also be extended to finitely generated
abelian groups.

Theorem 1.6. Every finite abelian group G is a direct product of
cyclic subgroups:

G =

l

·
∏

i=1

Gi .

Additionally, we can postulate that the orders ni :=| Gi | have the
divisibility properties ni+1 | ni (1 ≤ i < l). (The vector (n1, ..., nl) is
an invariant of the group G; the ni are said to be elementary divisors

of G.)

Proof. The proof is by induction on the order n of G. For n =
1, 2, 3 the group G itself is cyclic. Therefore we immediately proceed
to the induction step n −→ n + 1.

For G = 〈a1, ..., ak〉 the order of each element g ∈ G is a divisor of
lcm(ord(a1), ..., ord(ak)) =: n1.

Because of Lemma ?? the group G contains an element A1 with
ord(A1) = n1.

We set G1 := 〈A1〉 and G̃ := G/G1. The order of G̃ is smaller than
the order of G.

Because of our induction assumption the group G̃ is a direct product
of cyclic subgroups, say

G̃ =

l

·
∏

i=2

〈biG1〉 (bi ∈ G) ,

and the orders ni =| 〈biG1〉 | satisfy ni+1 | ni (2 ≤ i < l). (From
this it is clear that A1, b2, ..., bl generate G, but the product of the
corresponding cyclic subgroups is in general not direct. We therefore
need to change the bi adequately.)

Because of ni =| 〈biG1〉 | the exponent ni is minimal with the prop-
erty bni

i ∈ G1, and therefore ni divides every exponent µ satisfying
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bµ
i ∈ G1. As a consequence we have ni | ord(bi). We also know that

n1 = ord(bi)λi for a suitable integer λi.
Let us assume that

bni

i = Ami

1 (0 ≤ mi < n1) . (1)

We want to show that ni divides mi.
Because of Lemma ?? we get

ord(Ami

1 ) =
n1

gcd(n1,mi)
. (2)

Analogogously, we obtain

ord(bni

i ) =
ord(bi)

gcd(ord(bi), ni)
=

ord(bi)

ni

. (3)

Since ord(bi) divides n1 the equations (??), (??), and (??) yield

n1

gcd(n1,mi)
λi =

n1

ni

for the integer λi with n1 = ord(bi)λi.
From this we conclude

niλi = gcd(n1,mi) | mi ,

hence, there is an integer τi with niτi = mi.
We put Ai := biA

−τi

1 and obtain biG1 = AiG1 as well as ord(Ai) = ni.

We still need to show

G =

l

·
∏

i=1

〈Ai〉 .

Because of G = 〈A1, b2, ..., bl〉 we immediately get 〈A1, A2, ..., Al〉 =
G. We have already shown that the product is also direct if the pre-
sentations of elements of x ∈ G as power products of A1, ..., Al in the
form

x =
l
∏

i=1

Aµi

i (0 ≤ µi < ni)

are unique.
For this we assume that x ∈ G has presentations

x =
l
∏

i=1

Aµi

i =
l
∏

i=1

Aνi

i (0 ≤ µi, νi < ni) .
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This yields

Aµ1−ν1

1 =
l
∏

i=2

Aνi−µi

i (4)

and therefore also

G1 =

(

l
∏

i=2

Aνi−µi

i

)

G1

=
l
∏

i=2

(AiG1)
νi−µi

=
l
∏

i=2

(biG1)
νi−µi .

According to our induction assumption we get

νi − µi = 0 (2 ≤ i ≤ l) .

Inserting this into (??) we also find µ1 − ν1 = 0, hence µi = νi for
1 ≤ i ≤ l.

By our construction, the divisibility conditions for the ni are satisfied,
too.

2

Example Let G = Z/4Z×Z/6Z×Z/15Z of order 360. The least
common multiple of the orders of the 3 cyclic subgroups is 60. An
element A1 of G of order 60 is easily found, for example, we can choose
A1 = (1 + 4Z, 2 + 6Z, 3 + 15Z). Then the order of G/〈A1〉 is 6, that
factor group is therefore cyclic, a generator is (4Z, 1+6Z, 1+15Z)〈A1〉.
We set b2 = (4Z, 1 + 6Z, 1 + 15Z) and obtain b6

2 = A12
1 . This results in

A2 = b2A
−2
1 and G = 〈A1〉 × 〈A2〉.

Because of our considerations about the orders of products of ele-
ments, especially Lemma ??, the proof of the preceding theorem can
be employed for actually calculating the presentation of G as a di-
rect product as in the previous example. However, we postpone that
algorithmic treatment until chapter 6 since it is advisable to use the
machinery of normal forms of integral matrices which will be developed
there.


