

## 6. Exercise Discrete Geometrie II

**Deadline: 26.11.2025** (before the Exercise class)

**Each answer should be sufficiently proven.**

### 1. Exercise (Intersection of Varieties)

Sei  $f, g \in \mathbb{C}[x_1, \dots, x_k]$ , show that,

1.  $V(f) \cap V(g) = V(f, g)$ ,
2.  $V(f) \cup V(g) = V(fg)$ .

### 2. Exercise (Stereographic projection)

Let  $f(x, y) := x^2 + y^2 - 1$  and  $g(x, y) = y - t(x + 1)$  be polynomials in  $\mathbb{Q}[x, y]$ .

1. Show that

$$V(f) \cap V(g) = \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t}{1+t^2} \end{pmatrix} \right\}.$$

with  $t \in \mathbb{Q}$  such that  $1 + t^2 \neq 0$ .

2. Using this show that the integer solutions of  $a^2 + b^2 = c^2$  are given by

$$a = k(m^2 - n^2), \quad b = k(2mn), \quad c = k(m^2 + n^2)$$

with  $k, m, n \in \mathbb{Z}$ .

### 3. Exercise (Real components of algebraic varieties)

Sketch the real components of the following hypersurfaces in  $\mathbb{C}^2$ :

1.  $V(y - x^2)$
2.  $V(y^2 - x^3 + x)$
3.  $V(y^2 - x^3)$
4.  $V(y^2 - x^3 - x^2)$
5.  $V((x^2 + y^2)^2 + 3x^2y - y^3)$
6.  $V((x^2 + y^2)^3 - 4x^2y^2)$

**Hint:** If necessary, use a computer algebra system to plot the curves.